
Quark XML Author 2015
October 2018 Update for
Microsoft Word — System
Admin Guide

2019/05/17

QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN GUIDE |

Contents

Preface ...1
Why Quark XML Author? ...1

Features ..1

Usability ..1

Enterprise Fitness..3

Using This Manual ...3

Intended Audience ...3

Configuration Overview...4
Configuration Synopsis ...5

Word Configuration ..5

Disabling commands ..5

Repurposing commands ...5

Special considerations: command and buttons ..6

User Interfaces ..6

Dynamic Configuration ...7

Configuration: ShortcutKeys..9
ShortcutKeys Configuration in the AppConfig File ..9

ShortcutKeys Configuration in the DocConfig File ...9

Associating Shortcut Keys with Menu Items and CommandBarButtons...........9

ShortcutKey ..10

Supported Keys ..11

Unsupported Keys ..11

InternalClass..11

ExtensibilityInterface...12

Global Shortcut Key File: Disabling Shortcut Keys ...12

Configuration: Ribbon, Office Menu, and Backstage View13
Single and Multiple Ribbon Configurations ..13

Single Ribbon..13

Multiple Ribbons...13

Example ..14

Ribbon Strings and Resources ..14

Word Backstage View...14

Ribbon Nodes ...15

ii | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Icon IDs for use in imageMso ...15

<box> ...16

<button>...17

<buttonGroup> ..18

<checkBox>..19

<command> ...20

<commands>..21

<contextualTabs> ...22

<customUI> ..22

<dropDown> ..22

<group>..23

<menu> ..24

<menuSeparator>...26

Word Backstage View ...26

Quick Access Toolbar (QAT)..34

<ribbon>...34

<separator> ..35

<splitButton>..36

<tab> ..36

<tabs> ..37

<toggleButton>..38

Unique Ids...41

Undo ...42

Printing ...42

Word 2010 and later ...42

Hiding/Disabling Ribbon Tabs for Third-Party Software43

Application Configuration: Internal Classes44
AcceptRevision ...44

AssignAttribute...45

ChangeToList...45

ChangeToPara ...47

ClearUndoStack ..47

Copy..48

CreateRendition ..48

filter ...49

StyleSheet Child Nodes ..50

Using CreateRendition to Load External Objects ...50

Cut ..51

DeleteComment..51

DeleteTable ...52

DeleteTableCol..52

DeleteTableRow..52

DocumentAttributes ...52

DocumentClose...52

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | iii

DocumentNew ..52

DocumentOpen...53

filter ...54

DocumentOpenWord ..55

DocumentSave ..55

DocumentSaveAs ..56

filter ...57

EmailRendition ..57

filter ...59

EmphasisAction...60

EmphasisHandler ..61

FindAndReplace ..61

FormattingAction..62

FormattingActionChangeCase ..64

FormatTableCellShading ...64

Selections containing cells with different color attribute definitions65

IndentElement...65

InlineAttributes ...67

InsertXACrossref...67

InsertComment ...67

InsertColumnBreak..67

InsertCustomLink ..67

InsertElement..68

displayName ...68

Insert Emphasis...69

InsertEndNote ..70

InsertEntityReference ...70

InsertFootnote ..70

InsertHyperlink ...71

InsertInlineElement ...71

InsertPageBreak..72

InsertSectionBreak..72

InsertTable ..72

InsertTableColumn ..73

InsertTableRow ...73

ManageTextEntities ..73

MergeComments ..73

Selecting Files ...74

Automatically Merging All Comments ..74

MergeTableCells ...74

PageLayout ...74

Paste ...75

DefaultPasteOptionAsText ...75

PreviewRendition..75

iv | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

filter ...77

StyleSheet Child Nodes ..78

Using PreviewRendition to Load External Objects ...78

Redo..78

RejectRevision...78

SaveToRepository ...79

Tokens ...79

Delegates..79

SetAccessMode...80

User Experience ..80

Access Modes and SharePoint..81

SetColumns ...81

SpellChecker ...81

ShowAttributesHandler ..81

SplitTableCells ...82

StyleHandler ...82

TableAutoFitBehavior ...82

TableBorders ...83

TableCellAlignment ...83

TableDistributeColumns ..84

TableDistributeRows ...84

TableRefresh ...84

QuarkSubSection ..84

ToggleCommentsPane ..84

ToggleEmpty...84

ToggleEntityView..84

ToggleKeepWithNext ...84

ToggleTrackChange...85

ToggleVisibleElement ...85

ToggleWidowOrphanControl ..85

Undo ...85

UpdateSchema..86

WordDialogEdit ..86

Application Configuration: Extensibility Interface87
Programming for Quark XML Author ...87

Calling Quark XML Author from an External Method with Delegates....................88

Configuring the Extensibility Interface ...88

Building the EI Method...88

Calling the EI Method...93

List of Available Enumerated Values...99

XOM Defined..104

List of Available Delegates ...104

List of Available Document Events ...141

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | v

Application Configuration: ResolveReferences147
The Reference Node ...147

Pattern Attribute ...147

Assembly and Class Attributes ...148

Tokens ...148

Application Configuration: Miscellaneous items149
CultureName...149

Language and Numerical Content..149

EnableProgressDialogs ...149

ErrorLogging...149

ExtendedLoggingInfo ...149

LogFilePath ...150

UndoHistory..150

Namespaces ..150

Namespace ...150

NotSupported...152

TempFilePath ..153

Blocking Shortcut Keys ...153

DisableTemplateAddins...154

Disable all add-ins...156

Disable all add-ins except the specified list..156

Disable the specified list of add-ins ..156

ImageFilePath ...156

Document Level Configuration ..158
Portionmarks...158

ReferenceShadingColor ..160

AllowRestartContinueNumbering...160

DefaultSaveOptions ..160

ComponentCopy...160

Commenting..161

Attribute..161

Break...162

SectionBreak ...162

PageBreak ...162

ColumnBreak ..162

AllowHeaderFooterEdit..163

AllowSoftLinebreaks ...163

Smart Paste ...163

Reviewing ...163

HiddenInsertables ...164

Change To Menu ...164

ShowInsertBeforeMenu ..164

PasteTrackDeletedText ...165

vi | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

ShowInsertAfterMenu...165

EnableFastSave...166

EnableOpenDocxSupport ...166

dir..166

Application Configuration: XpressUpdates..............................167
Overview ..167

XpressUpdate.xml ..167

Manifest.xml ...168

Dialogs ..168

Quark XML Author Structure Overview170
XML Declaration and Processing Instructions...170

Defining Multiple Namespaces...170

Root Element ..170

External Entities..171

Definition Order..171

Attributes ..171

Emphasis Styles...172

Elements ...172

Comment Lines ...172

Attribute Groups ..173

Common Attributes ..174

Field Attributes ...174

Quark XML Author Structure Attribute Definition187
AttributeDef ...187

Restriction ...187

Using uniqueidentifier...188

Associating Attribute Definitions with Elements and Emphasis188

SectionBreak, PageBreak, and ColumnBreak Attributes188

Quark XML Author Structure Emphasis Definition190
EmphasisDef ...190

Specialized..191

Style ..199

Substyles ...200

Attributes and Attributes Type..201

Associating Emphasis with Elements ..201

Extensibility Methods..202

Restricting Emphasis Nesting ...204

Inline Media ..205

See section 14.6.2, ‘’Images ...205

Inline OLE ...205

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | vii

Quark XML Author Structure Element Definition207
ElementDef ...207

Section ..215

Para ...216

Sequence ..222

Choice...223

Uniqueidentifier ..230

Unmanaged ..230

OLE ...230

Media ..232

Reference ..235

EndNote..237

Table ...238

Support for language-specific configurations...281

 UI controls and features ...281

Icons..283

Context Menus..283

Resource Files ...283

Modifying file filter resource strings..287

Extensibility Methods..291

Starter Documents and Templates ...294
Starter Document ...294

Document Content ...294

Namespace ...295

DOCTYPE declarations ...295

Microsoft Word Templates..295

Preparing to Use TemplateManager ...296

Removing temporary files ...296

CollectControls.exe ..297

To Launch TemplateManager..298

Application Config Tab ...299

Document Config Tab...301

Converting Word 2003 configurations to the latest supported version.......305

Enabling the Styles button in standard Word ...305

Structured Authoring ...307
Deleting Content Elements and Structure ..307

Backspace and Delete in Structured Authoring ..307

Entering / Pasting Text - Advanced ..308

Typing in an Empty ...308

Tab in Structured Authoring..308

Cut, Copy, Paste in Tables...309

General ...309

Pasting Table Elements ...310

viii | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Pasting Table Elements Into a Selection ...310

Pasting Table Elements Without a Selection ..311

Creating Tables from Copied Table Elements ...313

“strict XML” execution of Cut and Copy ..313

Multiple element - Cut, Copy, Paste ...314

Integration with Content Management Systems316
SaveToRepository ...316

Example ..317

Upload() Interface ...317

Example 1: Upload without delegates..318

Example 2: Upload with delegates ...319

Example 3: Upload a document fragment..321

Download and Content Reuse ..323

Open a CMS Document in Quark XML Author...323

Importing content into existing documents..325

Download Interface ..327

Example 1: Drag and Drop External Content ...329

Example 2: Using Paste to Insert External Content ..329

Example 3: Opening a Document Referencing External Content330

Configuring Smart Paste ..331
Smart Paste Overview ..331

Smart Paste Extensibility Method ..332

Configuration-specific transforms ...332

Configuration-specific table transforms..333

Enabling Smart Paste..333

The Intermediate Schema ...333

TextType Elements ..334

Table ...335

Image ..335

Final Transformation Stylesheet..336

Multipart Wrapper ..336

Example: Intermediate Heading > Quark XML Author Section............................337

Example: Handling List Items ...338

Example: Handling Table Rows...339

Configuring MetaFormsBridge...340
XpressRun Method ...340

XpressRun Tokens ...341

MetaForms Files ...342

Example ..342

Implementing Cross References...343
AppConfig...343

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | ix

DocConfig ...343

EI Method ...343

ComponentCopy Node ..343

ElementDef ...344

EmphasisDef ...344

Configuring the Cross-reference dialog ..345

Configuring dialog listings based on target element names (XMLNames) or

XPath...345

Extensibility Interface Use Case Study348
Inserting Elements Through EI in Quark XML Author348

Example 1 ...349

Example 2 ...354

MathType Integration...356
Implementing MathType Support ...356

Serialization...357

Developer Notes...357

OLE Word Document Integration...358
Embedded Table User Experience ..358

Editing...359

Viewing ...359

Copy and Paste...359

Implementing Embedded Table Support ..359

Starter documents...361

Sample configuration..361

Images ..362

Emphasis ...362

Metadata...364

Smart Content..370
Overview ..370

Serialization...370

Word Tables ..371

Why are there empty values in the smart content?...372

Serializing Metadata ...372

Images..374
The Word canvas...374

Image sizing logic..374

Rounding Error Issue...374

Implementing a Custom XML Resolver376
Implementation Overview ..376

x | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

How Microsoft and Quark Support Languages and Cultures...378
Bidirectional language support ...380

Bidirectional language support in Microsoft Office ..380

Bidirectional language support in Quark XML Author..380

Configuring the XAS to allow support of direction attributes for elements 381

Configuring the user interface for bidirectional language support381

Configuring bidirectional language support at the content level382

Configuring bidirectional language support at the element level383

Configuring bidirectional language support at the document level383

IME based:Supporting New Languages...................................384
What Must Be Translated..384

Translation Process Overview ...384

(External) ...385

Icons (Internal) ..385

Shortcut keys (Internal)...386

Friendlies (Internal) ...386

Localization: A step-by-step example ...386

Pre-requisites ..386

The localization procedure..386

Variable Reference Support ...390
Section Type Elements ..390

Reference Type Elements..390

Additional delegates...391

Installation of Quark XML Author..392
Automated installation on a new machine: ...392

Or for manual installation on a new machine:...392

Appendix A – Color Names..394

Appendix B – Change Log..398
Changes in version 6.3 ..398

Changes in version 6.2 ..398

Changes in version 6.1 ..398

Legal notices ..400

PREFACE

QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN GUIDE |

Preface

Why Quark XML Author?

When given the choice, knowledge workers overwhelmingly opt to use their current

authoring tool—Microsoft Word. They would also like to use Word without concern

for the technical aspects of XML. It is only natural that your knowledge workers

would like Word to create the complex XML documents your organization needs

automatically and invisibly.

This is exactly what Quark XML Author for Microsoft Word does. Quark XML

Author is an add-on product that seamlessly combines with Microsoft Word and

does not affect Word functions—except when the author chooses to create an XML

document. Then, Quark XML Author takes over to create an environment where

Word menus and functions look and seem to operate normally, and content is

presented as the user works—without the distraction of XML tags, structures, or

rules. Quark XML Author ensures that content is valid as it is authored—not

sometime after the fact.

The result is a natural authoring experience for knowledge workers who can be sure

that documents will meet the technical requirements of their organization’s critical

initiatives.

Features

Usability

Quark XML Author delivers high-end XML authoring in Word through a host of

features,

including:

Quark XML Author delivers high-end XML authoring in Word through a host of

features, including:

A configurable, non-linear mapping between the XML Document Object Model •

(DOM) and the Word Interface. The “normal” way to add XML elements is from

a drop-down list. This method requires the author to know what an XML

element is, which element should be used, and how to insert it. Quark XML

Author maps element classes to any GUI object. For example, textual elements

may be inserted using the Style toolbar. Pictures and other references may be

PREFACE

2 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

inserted using the Insert menu along with its normal sub-menus. Table elements

may be inserted through the Table menu.

Continual monitoring of the user’s activity and dynamic activation of menu and •

toolbar functions only when they will create XML that conforms to the DTD or

Schema in use. When the user inserts an element, Quark XML Author

automatically creates mandatory parent or child elements and transparently

places the user within the proper element.

A powerful data pipe for structured and unstructured data. Users may create •

external references to graphics or text using drag-and-drop from a Content

Management System or they may reference external data sources for runtime

creation of virtual documents. Automation of metadata tasks so that the

organization can gain search accuracy and efficiency without overburdening

users. This includes pre-filling of metadata, automatic inheritance, dynamic roll-

up from element to document level, and more.

Exclusive What You See Is What You Need Interface. XML tags and formatting •

are hidden and Quark XML Author enhances the Spell Check, Track Changes,

and other advanced functions so that they work seamlessly with the visible and

invisible layer.

Loads XML and normal Word documents at the same time – no need to exit and •

restart Word.

Just-Write Editing monitors every keystroke and frees the author from thinking •

about XML rules. Try to edit referenced text? Quark XML Author will ask if you

would like to remove the reference and make the text your own. Press enter in

the middle of a paragraph? Quark XML Author splits the paragraph and creates

all the proper XML automatically – including mandatory related elements and

inherited attributes – behind the scenes and out of the author’s view. Multimedia

and textual referencing Content may be dragged from a Browser-based Content

Management System into Quark XML Author – the reference is automatically

inserted and traversed to display content in-line.

Referenced content may be locked to prevent editing, or configured for optional •

de-referencing and editing by the current author. Either way, the system records

the original source and any edits that may occur in the current context.

Future References allow placeholders to be passed to a Content Management •

System and work-orders to be passed to a Workflow System with automatic

update of content when the work is completed.

Dramatically reduces the effort required to provide a high level of detailed •

metadata that ensures accurate retrievals.

Automatically populates metadata and lists from LDAP, databases, or other •

operational data sources.

Provides cascading lists and configurable screens to speed the entry of any •

remaining metadata.

Automatically copies metadata from one element to the next and “rolls-up” •

metadata from elements and referenced content to the document level under

configurable rules. Unsurpassed help for metadata-weary users

PREFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 3

Quark XML Author is designed to operate with real-time integration to a content •

management server, workflow server, or other network resources. The

application may also be configured to run in a “briefcase” mode to support

mobile or occasionally-connected users.

Enterprise Fitness

Quark XML Author handles the most complex requirements without compromise:

Support for very complex DTDs or Schemas. •

Real-time connectivity for population from or to enterprise data sources. •

Open XML communication with Content Management Systems, Workflow •

Systems, and other network resources.

Version control over referenced content with locking to a fixed version or to the •

latest version. De-referencing of content with notification and audit trail.

Atomic blocks of referenced content ensure contextual integrity.

Microsoft C# implementation of .NET form mission critical stability monitors •

every keystroke and mouse click—enhancing or replacing standard Word

functions as needed. No fragile macros or VBA to break.

Using This Manual

Configuring and integrating Quark XML Author involves several processes. This

manual provides instructions for:

Configuring the Word File menu and Word ribbon to include only those that •

conform to a valid XML output.

Configuring access to the Extensibility Interface, a utility linking to an external •

process for the retrieval of defined values.

Defining the messages displayed in Microsoft Word as they relate to the •

document.

Defining the structure of a document class using the Quark XML Author •

Structure (*.xas).

Configuring the Microsoft Word templates for each document class to determine •

document layout and presentation.

Intended Audience

This guide has been prepared for persons responsible for configuring and integrating

Quark XML Author for Microsoft Word. The reader is expected to have knowledge

of XML structure, syntax, and standard terminology, as well as of Microsoft Word.

CONFIGURATION OVERVIEW

4 | QUARK

Configuration Overview

The configuration of XML Author specifies the user interface within Microsoft Word

and assigns XML Author features and functionality to those user interface controls.

Word 2010 and later expose a user interface called the Backstage view.

At the document level, the user interface for XML Author must be designed for the

following scenarios:

Word with no document or a standard Word document loaded •

Word with an XML Author document loaded •

This is true for all suported Microsoft Word versions.

At the control level, the following user interface controls may be customized:

User interface labels •

Titles •

Descriptions •

Screentips •

Keytips •

The text for these is created and maintained in a resource file separate from the

configuration files for ease of localization.

Quark XML Author makes it possible to alter or disable Microsoft Word commands

and options to maintain the XML structural integrity of a Quark XML Author

document. These options can be constrained to prevent Quark XML Author users

from invalidating the document against an XML Schema, even when the same

action may be allowed in MS Word.

Two files specify how constraints apply to commands and options:

AppConfig.xml: applies regardless of what Quark XML Author document class is 1.

active.

DocConfig.xml: a document-class specific file which allows your organization to 2.

develop multiple document classes. Each of these may have a unique interface

within Word. The name of this document-level configuration file may vary and

is referred here as DocConfig.xml for the sake of convenience.

CONFIGURATION OVERVIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 5

Configuration Synopsis

The main components for configuration reside in AppConfig.xml and the

DocConfig.xml file:

The following components are common to all supported versions of Microsoft

Word.

Shortcut Keys. Shortcut keys define keystroke combinations to launch common

Quark XML Author or Microsoft Word commands.

Extensibility Interface. This section identifies the arguments required to launch

the Extensibility Interface, which provides access to external processes for defining

or auto-populating attribute values for content elements.

Details for each component appear in later sections of this document.

Word Configuration

Disabling commands

A Word command can be enabled/disabled at the command level. This

enables/disables the command across all occurrences in the Word user interface

including: Ribbon, Toolbar, Menus, Backstage and Quick Access Toolbar.

To disable a command, specify the command without a repurpose designation.

For example,

<command idMso="MyCommand"/>

See “<command>”.

The UI is disabled in XML Author and enabled in Word.

Repurposing commands

A Word command can be repurposed at the command level to a new function. This

repurposes the command to a single new function across all occurrences in the

Word user interface including: Ribbon, Toolbar, Menus, Backstage, and Quick

Access Toolbar.

For more information on repurposing controls, see the MSDN web page:

Search for the phrase “Overriding Commands and Repurposing Controls”.

To repurpose a command, specify the command with a repurpose designation.

For example,

<command idMso="FileSave">
 <InternalClass name="DocumentSave" nativeFormat="false"
filter="Save2007"/>
</command>

The UI is enabled in XML Author and Word. In XML Author, the command invokes

the repurpose designation. In Word, the command invokes the standard Word

feature.

http://msdn.microsoft.com/en-us/library/office/dd548011%28v=office.12%29.aspx

CONFIGURATION OVERVIEW

6 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Note: On the QAT, the only Word command that cannot be repurposed/overridden

is Undo. See “Quick Access Toolbar (QAT)”.

Special considerations: command and buttons

The visibility of a Word command is not controlled at the command level, but

rather at the individual button or menu. See “Common Attributes”.

If there are any UI elements (i.e. Ribbon button) using the same idMso, their visible,

enabled, and action override behavior will be inherited from the command. On the

other hand, if an idMso is used in a UI element but not a command, then these

values can be set explicitly. The enabling/disabling behavior will be inherited from

the command and should not be used in the UI element.

Table 2‑1: Visibility Settings

Settings may be combined using the pipe character.

For example visible = “Word | OLEWordDocument”.

Note: If a command is not defined, and a particular idMso is used in multiple UI

elements, the visibility of the first declaration found in the configuration will be

used, and all other UI elements will inherit from the first decleration.

Note: An action override for an idMso can only be set in a command node, not in a

UI element.

XML Author cannot hide commands on the QAT. See “Quick Access Toolbar (QAT)”.

User Interfaces

Ribbon. The ribbon is a component of Word.

Figure 2‑1: The Word 2010 Ribbon

Backstage View. The Backstage view is used only in the File menu of Word 2010

and later.

Visibility Attribute

visible in all Word and XML Author documents visible=”true”

not visible in all Word and XML Author

documents

visible=”false”

only visible in XML Author documents visible=”xa”

only visible in Word documents visible=”Word”

only visible in embedded Word documents visible=”OLEWordDocument”

CONFIGURATION OVERVIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 7

Figure 2‑2: File > XML Author submenu

Dynamic Configuration

Dynamic configuration allows the system to query and pull custom component and

configuration updates from the server. Configurations can vary based on user roles

and can be managed in a Platform collection. Configuration updates can be pushed

to clients, and clients can check for configuration updates on launch.

The following components allow for dynamic configuration:

OverrideConfig event. This event enables the custom Extensibility Interface to

pull updates to the configuration.

OverrideAppConfigPath delegate. This delegate enables the custom Extensibility

Interface to override the application configuration path.

CONFIGURATION OVERVIEW

8 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

These components can be defined in the Appconfig file as shown in the following

example:

<ExtensibilityInterface>
<MethodInfo>
 <Method
<Method id="OverrideConfiguration” assembly="external application
assembly
 name" class="external application class name"
 method="OverrideConfiguration">
 <Argument type="Tokens">
 <!—Server ConfigurationPathIdentifier – Specifies the CMS
specific
 idenifier for the configuration folder at the server. For
Platform,
 the identifier supports a role based collection path (*
signifies the
 default or fallback role):
 Role|<Role 1>,Path|<Collection Path 1>;Role|<Role
2>,Path|<Collection Path 2>
 LocalConfigurationPath – Specifies the folder path at the
local file
 system where the downloaded configuration if kept.
 CopyFilter – Specifies the recursive file search filter for
files in
 The installation location to be copied to the local
configuration
 path.You can specify multiple filters using "|" as a
separator. This
 filter is required only if the server folder keeps partial
 configurations.-->

 <Token>Server ConfigurationPathIdentifier=

Role|*,Path|;Role|Analyst,Path|Home/Configuration/Analyst;
 Role|Editor,Path|Home/Configuration/Editor
 </Token>
 <Token>LocalConfigurationPath=
 %Appdata%\Quark\XML Author\DynamicConfig
 </Token>
 <Token>CopyFilter=
 Schemas/*.*|en/*.*|es/*.*|fr/*.*|ja/*.*
 </Token>
 </Argument>
 <Argument type="Delegates ">
 <Delegate>OverrideAppConfigPath</Delegate>
 </Argument>
 </Method>
</MethodInfo>
</ExtensibilityInterface>

CONFIGURATION: SHORTCUTKEYS

QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN GUIDE |

Configuration: ShortcutKeys

Shortcut keys let you define keyboard combinations to common Quark XML Author

commands. These commands are launched by pressing a single keystroke (for

example, F12) or by pressing a combination of a keystroke and the Shift or Ctrl or

Alt key. The ShortcutKeys section of the configuration files defines these shortcuts

and the commands they launch.

The shortcut keys that should always be blocked are specified in the global

XAShortcutKeysConfig.xml file. This file is deployed with every installation.

Shortcut keys can be defined and modified both the AppConfig and DocConfig files,

and the procedures are the same in both files.

The order of precedence for key configurations is that the DocConfig overrides the

AppConfig which overrides the global XAShortcutKeysConfig.xml file.

ShortcutKeys Configuration in the AppConfig File

ShortcutKeys can be configured in both the AppConfig and DocConfig files.

Configuration in the AppConfig file will be reflected in the Word environment

regardless of the active document class. Quark recommends that you do not modify

XAShortcutKeysConfig.xml, but use the AppConfig file to configure shortcuts that

you want users to be able to use even if they have a standard Word document open.

ShortcutKeys Configuration in the DocConfig File

Use the DocConfig file to configure shortcuts that should only be available for a

specific document class. You may also need to block standard Word shortcuts in the

DocConfig file; how to block shortcuts is covered in section 8.9.

Associating Shortcut Keys with Menu Items and CommandBarButtons

Menu Items and CommandBar Buttons can both have shortcut keys associated with

them through the use of the ShortcutKey child element. To assign a shortcut to a

Menu Item or CommandBar Button, include an empty ShortcutKey element in the

MenuItem or CommandBarButton element.

CONFIGURATION: SHORTCUTKEYS

10 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

ShortcutKey

The ShortcutKey element’s attributes specify the character to use, and whether the

Shift, Ctrl, Alt, or some combination of the three are part of the shortcut key

combination. In the example below, the combination Ctrl + O launches the

command:

<ShortcutKey key="o" shift="false" ctrl="true"/>

The Key attribute value is the character to use. The values of shift and ctrl are set to

false if they are not used in the shortcut key, or true if they are. In the example

below, the combination Ctrl + Shift + x launches the menu item:

<ShortcutKey key="x" shift="true" ctrl="true"/>

Note that the values are case-sensitive.

Table 3‑1: ShortcutKey Attributes

Attribute Type Required Definition

alt boolean no If set to true, the Alt

key is part of the

shortcut key

combination. Set to

false if the Alt key is

not used.

ctrl boolean yes If set to true, the Ctrl

key is part of the

shortcut key

combination. Set to

false if the Ctrl key is

not used.

key string yes The keyboard key that

is used in the shortcut

key combination. All

keys on the keyboard

can be configured

except for Backspace

and Tab. Numeric

keypad keys can be

configured using the

values shown in Table

3‑2. The enter key may

be represented by

either Return or

Enter.

shift boolean yes If set to true, the Shift

key is part of the

shortcut key

combination. Set to

false if the Shift key is

not used.

CONFIGURATION: SHORTCUTKEYS

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 11

Table 3‑2: Numeric KeyPad Key Values

Table 3‑2: Numeric KeyPad Key Values

Supported Keys

Supported keys can be used in any combination with Shift, Ctrl, and Alt keys.

The list of supported keys includes:

+,=,_,-,|,\,{,},[,],~,`,?,/,>,.,<,,(comma),\,’,; , Return, Enter

The list of supported virtual keys includes:

 13, 186 – 192, 219 - 222

Unsupported Keys

The list of supported keys includes:

Home, End, Page Up, Page Down, Arrow keys, Tab, Enter

InternalClass

If the shortcut is for an internal command (one launched within Microsoft Word,

such as Cut, Copy, or Paste), add an InternalClass child element to the ShortcutKey

element.

The InternalClass element identifies the internal class value (for example, Cut) that

will launch the command. Enter the internal class name as the value of the name

attribute of the InternalClass element, as shown in the example below.

Keypad Key Key Attribute Value

1 NumPad1

2 NumPad2

3 NumPad3

4 NumPad4

5 NumPad5

6 NumPad6

7 NumPad7

8 NumPad8

9 NumPad9

0 NumPad0

/ Divide

* Multiply

- Subtract

+ Add

. Decimal

CONFIGURATION: SHORTCUTKEYS

12 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

<InternalClass name="Cut"/>

In the example below, the shortcut key combination Shift + Del will cut the

selection from the document and place it on the clipboard.

<ShortcutKey Key="DEL" Shift="true" Ctrl="false">
 <InternalClass name="Cut"/>
</ShortcutKey>

ExtensibilityInterface

If the shortcut is for an external command (one that launches an external process),

add an ExtensibilityMethod child element to the ShortcutKey element.

The ExtensibilityMethod element identifies the ExtensibilityInterface method (such

as Popup) that will launch the command. The ExtensibilityMethod element has one

required attribute: id. The value of the id attribute is the name of the Extensibility

Method specified in the EI node of the configuration file. An example is shown

below.

<ExtensibilityMethod id="Popup"/>

In the following example, the shortcut key F12 launches the Popup

ExtensibilityInterface Method.

<ShortcutKey Key="F12" Shift="false" Ctrl="false">
 <ExtensibilityMethod id="Popup"/>
</ShortcutKey>

ExtensibilityInterface methods are defined in the Extensibility Interface, which is

covered in Section 6.

Global Shortcut Key File: Disabling Shortcut Keys

The Global Shortcut Key file contains the list of shortcut keys that are disabled by

Quark XML Author in all configurations.

The following is a fragment of the XAShortcutKeysConfig .xml file:

<?xml version="1.0" encoding="utf-8"?>
<!-- This is a list of universal shortcuts to disable on all
configurations. Keys can be repurposed in DocConfig ShortcutKeys
node. -->
<ShortcutKeys>
 <ShortcutKey key="B" shift="true" ctrl="true" />
 <!-- remove bold -->
 <ShortcutKey key="C" shift="true" ctrl="true" />
 <!-- copy formatting -->
 <ShortcutKey key="D" ctrl="true" />
 <!-- font dialog -->
</ShortcutKeys>

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN GUIDE |

Configuration: Ribbon, Office Menu,
and Backstage View

Ribbons, Office button menus, menu items and Backstage views can be defined and

modified in both the AppConfig and DocConfig files, and the procedures are the

same in both files.

Configuring Quark XML Author for Microsoft Word requires adding a new node

(<ribbon>) to AppConfig.xml and, if multiple ribbon configuration support is

needed, the DocConfig file as well.

Single and Multiple Ribbon Configurations

Single Ribbon

If a single ribbon configuration is required, the entire ribbon can be configured in

AppConfig.xml. This includes:

Defining the tabs that will be visible in the standard Word interface (i.e., no •

document is loaded or the current active document is not a Quark XML Author

document).

Defining the Quark XML Author tabs that will be visible when a Quark XML •

Author document is the active document.

Defining the controls on Quark XML Author tabs that will be visible when a •

Quark XML Author document is the active document.

Multiple Ribbons

If multiple ribbon configurations are necessary, ribbon configuration is split

between AppConfig.xml and the DocConfig file. Global UI definitions are placed in

the <Ribbon> node in AppConfig.xml. This includes:

Defining the tabs that will be visible in the standard Word interface (i.e., no •

document is loaded or the current active document is not a Quark XML Author

document).

Defining the Quark XML Author tabs which appear in all ribbon configurations •

when a Quark XML Author document is the active document.

Defining the controls on Quark XML Author tabs which appear in all ribbon •

configurations when a Quark XML Author document is the active document.

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

14 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Each DocConfig file defines a separate ribbon configuration. The <Ribbon> node in

the DocConfig file defines only those tabs and controls that are visible for that

ribbon configuration. This includes:

Defining tabs that will only be visible for a specific ribbon configuration. •

Defining controls that will only be visible for a specific ribbon configuration. •

Example

For example, assume two document classes. Class A may contain tables. Class B

cannot. This necessitates the following configuration structure:

The <Ribbon> node in AppConfig.xml would define the Quark XML Author •

version of the Insert tab and specify that it only appears when a Quark XML

Author document is the active document.

The <Ribbon> node in AppConfig.xml would specify that the native Word Insert •

tab not appear when a Quark XML Author document is the active document.

The <Ribbon> node in the DocConfig for Class A would contain a button for •

inserting tables.

The <Ribbon> node in the DocConfig for Class B would not contain a button for •

inserting tables.

In this example, the resource file contains the strings for the XML Author Insert tab

label and the Insert Table button’s label, description, screentip, and keytip. See

“Error! Reference source not found.”.

Ribbon Strings and Resources

In addition, the resource file must be populated with the strings for user interface

labels, titles, descriptions, screentips, and keytips. See “Error! Reference source not

found.”.

Specify the various attributes by concatenating the control’s id value with an

underscore followed by the attribute name. Consider the following menu item:

<menu id="XMLAuthor" image="QuarkXMLAuthor.ico"

insertBeforeMso="FileNew" itemSize="large" visible="true">

To specify label and title values, add the following entries to the resource file:

XMLAuthor_label = “New XML”

XMLAuthor_title = “New Business Document”

This resource file is created and compiled the same as other resource files.

Word Backstage View

The <backstage> node defines the items that appear in the Word File menu. The

<backstage> node is a child of <Ribbon>\<customUI>. See 4.4.14 for details.

The example below is specific for Word 2010 Backstage View

<Ribbon>

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 15

<customUI>
 <backstage>
 </backstage>
</customUI>
</Ribbon>

The example below is specific for the Backstage View in Word 2013 or later.

<Ribbon>
<customUI>
 <backstage2013>
 </backstage2013>
</customUI>
</Ribbon>

Ribbon Nodes

The <Ribbon> node follows immediately after the <CommandBars> element in

AppConfig.xml and in the DocConfig file.

The general structure of the <Ribbon> node looks like the XML shown below. The

xmlns attribute should be the first attribute.

<Ribbon>
 <customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
onLoad="OnLoad" loadImage="LoadImage">
 <commands>
 <!-- one or more command nodes -->
 </commands>
 <ribbon>
 <!-- all of the nuts and bolts of the office
menu and ribbon tabs -->
 </ribbon>
 </customUI>
</Ribbon>

The following subsections describe each available node in alphabetical order.

Icon IDs for use in imageMso

For several of the user interface controls on the ribbon, the imageMso attribute

contains the id value of the image displayed on a ribbon button by Word. These

values (or names) may be found in the following Microsoft article:

“2016 Office System Document: Lists of Control IDs”

The article states “These names are also accessible within the 2016 product by

hovering over controls in the QAT customization dialog, and looking at the

screentip of the control.” The article also contains a link to download collection of

spreadsheets which contain these values for use in the imageMso attribute.

Or you can view these icons and their values in Microsoft Excel in the Developer tab

of the Ribbon.

To display the Developer tab in the Excel Ribbon:

Click the Application button, then click Excel Options. 1.

In the Excel Options dialog, click Popular. 2.

https://www.microsoft.com/en-us/download/details.aspx?id=50745

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

16 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Check Show Developer tab in the Ribbon. 3.

Click OK. 4.

Figure 4‑1: Excel Ribbon – Developer tab

Click a Gallery button. 1.

In the Gallery drop down, click the desired icon. 2.

In the imageMso dialog, record the imageMso value for the selected icon. For 3.

example “AcceptInvitation”.

Figure 4‑2: The imageMso dialog displays the icon’s value

<box>

The <box> node can be used to collect a series of controls within the <group> node

into a vertical or horizontal box.

Common Attributes

The <box> node uses the required attribute id.

Unique Attributes

The <box> node uses the unique attribute described in Table 4‑1.

Table 4‑1: <box> Attributes

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 17

Child of

The <box> node may be a child of the following element:

<group> •

Parent of

The <box> node may contain one or more of the following elements:

<button> •

<buttonGroup> •

<checkBox> •

<command> •

<menu> •

<splitButton> •

<toggleButton> •

Example

The example below contains two dropdown lists and a button group in a horizontal

row.

<box id="StyleEmphasisDropdowns" boxStyle="horizontal">
 <dropDown id="StylesListXA" showLabel="false"
sizeString="XXXXXXXXXXXXXXXXXXXXXXXX">
 <!-- Control details ommitted -->
 </dropDown>
 <dropDown id="EmphasisListXA" showLabel="false"
sizeString="XXXXXXXXXXXXXXXX">
 <!-- Control details ommitted -->
 </dropDown>
</box>

<button>

The <button> node defines a button control.

To use a native Word button, specify a value for the idMso attribute. The specified

Word button is then used without modification; the <button> node for this type of

button is a leaf node.

To define a Quark XML Author button, specify a value for the id attribute. Child

elements define the button behavior.

Common Attributes

The <button> node uses the following “Common Attributes”:

id or idMso (required) •

image •

imageMso •

Attribute Value Required Description

boxStyle horizontal|vertical yes Defines the

orientation of the box.

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

18 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

insertAfterMso •

showLabel •

size •

visible •

The following common attributes for the <button> node may still be used but have

been deprecated:

description •

label •

screentip •

Define these values in the “Resource Files”.

Child of

The <button> node may be a child of the following nodes:

<box> •

<buttonGroup> •

<group> •

<menu> •

<officeMenu> •

<splitButton> •

Parent of

The <button> node may contain the following nodes:

<InternalClass> •

<ExtensibilityMethod> •

<ShortcutKey> •

These nodes define the behavior of the control and are defined in the System

Admin Guide.

Example

In the example below, the button invokes the “PasteChart” Extensibility Method

and can also be triggered with the shortcut key Ctrl + V.

<button id="PasteChartXA" imageMso="Paste" size="large"
label="Paste Chart”>
 <ExtensibilityMethod id="PasteChart"/>
 <ShortcutKey key="V" shift="false" ctrl="true"/>
</button>

<buttonGroup>

The <buttonGroup> node contains a collection of one or more buttons or toggle

buttons.

Common Attributes

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 19

The <buttonGroup> node uses the required attribute <id.>

Child of

The <buttonGroup> node may be a child of <box>.

Parent of

The <buttonGroup> node may contain the following nodes:

<button> •

<toggleButton> •

Example

In the example below, the <buttonGroup> contains three toggle buttons.

<buttonGroup id="BoldItalicUnderlineGroup">
 <toggleButton id="Bold" imageMso="Bold" showLabel="false">
 <!-- Control details ommitted -->
 </toggleButton>
 <toggleButton id="Italic" imageMso="Italic"
showLabel="false">
 <!-- Control details ommitted -->
 </toggleButton>
 <toggleButton id="Underline" imageMso="Underline"
showLabel="false">
 <!-- Control details ommitted -->
 </toggleButton>
</buttonGroup>

In the example below, the Toggle Empties button is used to allow a Quark XML

Author user to view Empties on the canvas. This approach enables a legacy Quark

XML Author user to visualize the layout.

<buttonGroup id="ToggleEmpties">
<toggleButton id="HideEmpties"
 imageMso="SizeToControlHeight"
 showLabel="false">
<InternalClass name=”ToggleEmpty”/>
</toggleButton>
</buttonGroup>

This EmptiesInaccessible element contain a value of either true or false (default).

This allows the user to hide and show Empties.

An example is shown below:

<EmptiesInaccessible>true</ EmptiesInaccessible >

<checkBox>

The <checkBox> node is used to specify a check box control.

Common Attributes

The <checkBox> node uses the following “Common Attributes”:

id or idMso (Required) •

image or imageMso •

showLabel •

size •

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

20 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

The following common attributes for the <toggleButton> node may still be used but

have been deprecated:

keytip •

label •

screentip •

To define these values, use the Resources file. See “Error! Reference source not

found.”.

Child of

The <checkBox> node may be a child of the following nodes:

<box> •

<group> •

Example

In the example below, the native Word checkbox for viewing the Document Map is

defined.

<checkBox idMso="ViewDocumentMap"/>

<command>

The <command> node defines the behavior for a standard Word command. It can

globally override Word functionality or only apply when a Quark XML Author

document is active.

The <command> node always uses the idMso attribute rather than the id attribute

because it always points to a native Word command.

To disable a command, specify the command without a repurpose designation.

For example,

<command idMso="MyCommand"/>

To repurpose a command, specify the command with a repurpose designation.

For example,

<command idMso="FileSave">

 <InternalClass name="DocumentSave" nativeFormat="false"
filter="Save2007"/>

</command>

The visibility of a command is specified at the individual user interface control.

Common Attributes

The <command> node uses the required attribute idMso.

Child of

The <command> node may be a child of the node <commands>

Parent of

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 21

The <command> node may contain the following nodes:

<ExtensibilityMethod> •

<InternalClass> •

<ShortcutKey> •

These nodes define the behavior of the control and are defined in the System

Admin Guide.

Examples

In the following example, setting visible=”xa” indicates that the functionality of the

native Word command FileSave will be overridden whenever it is invoked from

within a Quark XML Author document.

<command idMso="FileSave" visible="xa">
 <ShortcutKey key="S" shift="false" ctrl="true"/>
 <InternalClass name="DocumentSave" nativeFormat="false"
filter="Save2007"/>
</command>

In the following example, setting visible=”true” indicates that the native Word

command will always be available. As a result, “FileClose” would not need to be

specifically defined as part of the Office Menu in the <officeMenu> node.

<command idMso="FileClose" visible="true"/>

<commands>

The <commands> node contains a collection of <command> nodes that specifies

native Word functionality on a global level.

Common Attributes

The <commands> node uses no attributes:

Child of

The <commands> node may be a child of the node <customUI>

Parent of

The <commands> node may contain the node <command>

Example

<commands>
 <command idMso="FileSave" visible="xa">
 <ShortcutKey key="S" shift="false" ctrl="true"/>
 <InternalClass name="DocumentSave"
nativeFormat="false" filter="Save2007"/>
 </command>
 <command idMso="FileClose" visible="true"/>
 <command idMso="ApplicationOptionsDialog"/>
 <command idMso="Help" visible="xa">
 <ExtensibilityMethod id="About"/>
 </command>
</commands>

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

22 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

<contextualTabs>

Word has contextual tabs for Table Tools and Pictures Tools. The items on these tabs

can break the Quark XML Author document structure and must be suppressed. Add

the XML snippet below after the <tabs> node to suppress these contextual tabs

when a Quark XML Author document is the active document.

<contextualTabs>
 <tabSet idMso="TabSetTableTools" visible="Word"/>
 <tabSet idMso="TabSetPictureToolsClassic" visible="Word"/>
</contextualTabs>

<customUI>

The <customUI> node contains all of the command and ribbon definitions.

Common Attributes

The <customUI> node must have the following structure. The xmlns attribute

should be the first attribute.

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”

onLoad=”OnLoad” loadImage=”LoadImage”>

Child of

The <customUI> node is the child of <Ribbon>

Parent of

The <customUI> contains the following nodes:

<commands> •

<ribbon> •

Example

 <customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
onLoad="OnLoad" loadImage="LoadImage">
 <commands>
 <!-- one or more command nodes -->
 </commands>
 <ribbon>
 <!-- all of the nuts and bolts of the office
menu and ribbon tabs -->
 </ribbon>
 </customUI>

<dropDown>

The <dropDown> node defines the following attributes:

Common Attributes

The <dropDown> node uses the following “Common Attributes”:

id (Required) •

showLabel •

sizeString •

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 23

The following common attributes for the <dropDown> node may still be used but

have been deprecated:

label •

To define these values, use the Resources file. See “Error! Reference source not

found.”.

Child of

The <dropDown> node may be a child of the following nodes:

<box> •

<group> •

Parent of

The <dropDown> node may contain the following nodes:

<InternalClass> •

These nodes define the behavior of the control and are defined in the System

Admin Guide.

Example

<dropDown id="StylesListXA" showLabel="false"
sizeString="XXXXXXXXXXXXXXXXXXXXXXXX">
 <InternalClass name="StyleHandler"/>
</dropDown>

<group>

Controls on each ribbon tab are organized into logical groups. In Figure 4‑3, the

Quark XML Author Home tab is shown with three groups: Clipboard, Styles, and

Editing.

Figure 4‑3: Home tab with three groups

The <group> node defines each group on a tab and contains all the other controls.

Common Attributes

The <group> node uses the following “Common Attributes”:

id or idMso (required) •

insertAfterMso (optional) •

insertBeforeMso (optional) •

visible (optional) •

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

24 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

The following common attributes for the <group> node may still be used but have

been deprecated:

label •

To define these values, use the Resources file. See “Error! Reference source not

found.”.

Child of

The <group> node may be a child of the following element:

<tab> •

Parent of

The group node may contain any of the following control nodes.

<box> •

<button> •

<command> •

<menu> •

<splitButton> •

<toggleButton> •

Each of these nodes is discussed in Section 4.2.

Example

The example below shows a group containing three buttons.

<group id="CopyPasteXA">
 <button id="PasteXA" imageMso="Paste" size="large">
 <!-- Control details ommitted -->
 </button>
 <button id="CutXA" imageMso="Cut">
 <!-- Control details ommitted -->
 </button>
 <button id="CopyXA" imageMso="Copy">
 <!-- Control details ommitted -->
 </button>
</group>

<menu>

The <menu> node defines a menu with the Office menu, a ribbon tab, or a split

button.

To use a native Word menu, specify a value for the idMso attribute.

To define a custom menu, specify a value for the id attribute.

Common Attributes

The <menu> node uses the following “Common Attributes”:

id or idMso (required) •

image or imageMso •

insertBeforeMso •

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 25

itemSize •

size •

visible •

The following common attributes for the <menu> node may still be used but have

been deprecated:

keytip •

label •

screentip •

title •

To define these values, use the Resources file. See “Error! Reference source not

found.”.

Unique Attributes

The <menu> node may also use the unique attribute described in Table 4‑1.

Table 4‑2: <menu> Attributes

Child of

The <menu> node may be a child of the following nodes:

<box> •

<group> •

<officeMenu> •

<splitButton> •

Parent of

The <menu> node may contain the following nodes:

<button> •

<toggleButton> •

Example

The example below presents a menu with two buttons.

<menu id="FileSendXAMenu" image="export-to-xml-icon.ico"
insertBeforeMso="FilePrepareMenu" itemSize="large" visible="XA">
 <button id="FileExportToIE" imageMso="WebPagePreview">
 <!-- Control details ommitted -->
 </button>
 <button id="FileSendAsXmlAttachment"
imageMso="FileSendAsAttachment">
 <!-- Control details ommitted -->
 </button>

Attribute Value Description

itemSize large Display size of the menu item.

Defaults to small.

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

26 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

</
menu
>

<menuSeparator>

The <menuSeparator> node forces a separation line to appear between menu items.

Common Attributes

The <menuSeparator> node uses the following “Common Attributes”:

id (Required) •

Child of

The <menuSeparator> node may be a child of the following nodes:

<menu> •

<officeMenu> •

Parent of

The <menuSeparator> node may not contain any child nodes.

Example

In the example below, the highlighted node causes a separation line to appear

before the FileOpen button.

<menu id="XpressAuthor" image="QuarkXMLAuthor.ico"
insertBeforeMso="FileNew" itemSize="large" visible="true">
 <button id="NewTopic" image="topic-icon.ico"
visible="true">
 <!-- Control details ommitted -->
 </button>
 <button id="NewTask" image="task-icon.ico" visible="true">
 <!-- Control details ommitted -->
 </button>
 <button id="NewConcept" image="concept-icon.ico"
visible="true">
 <!-- Control details ommitted -->
 </button>
 <button id="NewReference" image="reference-icon.ico"
visible="true">
 <!-- Control details ommitted -->
 </button>
 <menuSeparator id="FileOpenSeparator"/>
 <button id="FileOpen" image="open-xa-icon.ico"
visible="true">
 <!-- Control details ommitted -->
 </button>
</menu>

Word Backstage View

Just as we had the ability to customize the Word 2007 Office menu, we have the

ability to customize the Word Backstage view (File menu).

The following overview is an excerpt from the “Introduction to the Office 2010

Backstage View for Developers” article ©Microsoft:

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 27

“In the 2007 release of the Microsoft Office system, file-level functionality was

accessible on the Office menu that was available by clicking the Office button.

“In Microsoft Office 2010 and 2013, the Office button is replaced by a File tab.

Clicking the File tab takes you to the Microsoft Office Backstage view.

“Backstage view is fully extensible by developers, permitting organizations to

customize the user interface (UI) to suit their own needs. And best of all, the

Backstage UI is customizable by using the same files, callbacks, and many of the

controls used in the Ribbon. This means that developers already familiar with

customizing the Ribbon UI can use those same skills to create a Backstage UI

targeted at the needs of their organization.”

Additional information:

MSDN Library 691833

The <backstage> node defines the items that appear on the Word File menu. The

Word File menu may have any combination of menus, buttons, and split buttons.

Quark recommends that Quark XML Author configurations mimic, as much as

possible, the native Word interface. Thus the Word File menu should be defined to

present the same menu items that are present in standard Word, with the Quark

XML Author items at the top.

This solution is taken from the VSTO2010 documentation, however unlike the

Microsoft samples, Quark XML Author only uses the in-document UI

customization.

The following is a fragment from AppConfig file for Backstage 2010 that illustrates

where <backstage> resides in the <Ribbon>\<customUI>structure.

<Ribbon>
 <customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
onLoad="OnLoad" loadImage="LoadImage">
 <commands>
 <!-- one or more command nodes -->
 </commands>
 <ribbon>
 <!-- nuts and bolts of the office menu and ribbon
tabs -->
 <ribbon startFromScratch="false">
 <officeMenu>
 </officeMenu>
 <tabs>
 </tabs>
 <contextualTabs>
 </contextualTabs>
 </ribbon>
<!-- nuts and bolts of the backstage view -->
 <backstage>
 </backstage>
</customUI>
</Ribbon>

The following is a fragment from AppConfig file for Backstage 2013

 that illustrates where <backstage> resides in the <Ribbon>\<customUI>structure.

<Ribbon>
 <customUI
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
onLoad="OnLoad" loadImage="LoadImage">

http://msdn.microsoft.com/en-us/library/ee691833.aspx

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

28 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 <commands>
 <!-- one or more command nodes -->
 </commands>
 <ribbon>
 <!-- nuts and bolts of the office menu and ribbon
tabs -->
 <ribbon startFromScratch="false">
 <officeMenu>
 </officeMenu>
 <tabs>
 </tabs>
 <contextualTabs>
 </contextualTabs>
 </ribbon>
<!-- nuts and bolts of the backstage view -->
 <backstage2013>
 </backstage2013>
</customUI>
</Ribbon>

The following is an example <backstage> element, with screen shots of the user

interface that it would create. Note: The schema for <backstage> elements is not the

same as ribbon elements. For example, a ribbon group will not work for a Backstage

group.

<backstage>
 <button id="OpenXMLAuthor" getLabel="GetLabel" image="open-
xa-icon.ico" insertAfterMso="FileOpen" visible="true">
 <InternalClass name="DocumentOpen" filter="OpenXA2007QA" />
 </button>
 <button id="SaveAsXMLAuthor" getLabel="GetLabel"
imageMso="FileSaveAs" insertBeforeMso="FileOpen" visible="XA">
 <InternalClass name="DocumentSaveAs" nativeFormat="false"
filter="Save2007QA" />
 <ShortcutKey key="F12" shift="false" ctrl="false" />
 </button>
 <button id="XAViewAsXML" getLabel="GetLabel" image="export-
to-xml-icon.ico" insertBeforeMso="FileClose" visible="XA">
 <InternalClass name="PreviewRendition" xslt="qa\xml-pretty-
print.xsl" appPath="IExplore.exe" />
 </button>
 <tab id="FileNewXAMenu" insertBeforeMso="TabNew" title="XML
Author Templates" getLabel="GetLabel" visible="true"
columnWidthPercent="40">
 <firstColumn>
 <taskGroup id="XATemplateGroupQA"
allowedTaskSizes="largeMediumSmall">
 <!-- QA Templates -->
 <category id="QA" label="QA Templates">
 <task id="CreateNewQATask" label="QA"
imageMso="TemplatesMenu" description="Create an XML Author – QA
template" visible="true">
 <InternalClass name="DocumentNew"
templateXml="QA\blank-template.xml" />
 </task>
 </category>
 <!-- DITA Templates -->
 <category id="XATemplateGroupDita" label="DITA
Templates">
 <task id="CreateXADitaMap" label="Map"
imageMso="MeetingsToolAppointmentAgenda" description="Create an
XML Author – DITA Map document" visible="true">
 <InternalClass name="DocumentNew"
templateXml="DITA\template-map.xml" />
 </task>
 <task id="CreateXADitaTopic" label="Topic"

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 29

description="Create an XML Author – DITA Topic document"
image="topic-icon.ico" visible="true">
 <InternalClass name="DocumentNew"
templateXml="DITA/template-topic.xml" />
 </task>
 <task id="CreateXADitaTask" label="Task"
description="Create an XML Author – DITA Task document"
image="task-icon.ico" visible="true">
 <InternalClass name="DocumentNew"
templateXml="DITA/template-task.xml" />
 </task>
 <task id="CreateXADitaConcept" label="Concept"
description="Create an XML Author – DITA Concept document"
image="concept-icon.ico" visible="true">
 <InternalClass name="DocumentNew"
templateXml="DITA/template-concept.xml" />
 </task>
 <task id="CreateXADitaReference" label="Reference"
description="Create an XML Author – DITA Reference document"
image="reference-icon.ico" visible="true">
 <InternalClass name="DocumentNew"
templateXml="DITA/template-reference.xml" />
 </task>
 </category>
 </taskGroup>
 </firstColumn>
 <!-- DO NOT EDIT THIS COLUMN UNDER ANY CIRCUMSTANCES!!!!!!
-->
 <secondColumn>
 <group id="XAAboutBannerGroup">
 <topItems>
 <imageControl id="XALogo" getImage="GetXABannerImage"
visible="true" altText="Quark XMLAuthor for Microsoft Word"/>
 </topItems>
 </group>
 <group id="XABlurbGroup">
 <topItems>
 <labelControl id="XABlurb" getLabel="GetLabel"/>
 </topItems>
 </group>
 <group id="XAVersionInfoGroup" getLabel="GetLabel">
 <topItems>
 <labelControl id="XAVersionLable"
getLabel="GetVersionString"/>
 <labelControl id="XACopyrightLabel"
getLabel="GetLabel"/>
 <hyperlink id="XAEulaLink" getLabel="GetLabel"
onAction="OnEulaHyperlinkClick"/>
 </topItems>
 </group>
 </secondColumn>
 <!-- DO NOT EDIT ABOVE!!!!! -->
 </tab>
 <tab idMso="TabPrint">
 <firstColumn>
 <group id="XAGroupPrintSettings"
insertBeforeMso="GroupPrintSettings" getLabel="GetLabel"
style="error" visible="XA">
 <primaryItem>
 <button id="XAPageSetup" imageMso="PageSetupDialog"
getLabel="GetLabel" visible="XA">
 <InternalClass name="PageLayout" />
 </button>
 </primaryItem>
 <topItems>
 <labelControl id="XAPageSetupWarning"

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

30 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

getLabel="GetLabel"/>
 </topItems>
 </group>
 </firstColumn>
 </tab>
 <tab id="XAShare" getLabel="GetLabel"
insertBeforeMso="ApplicationOptionsDialog" visible="XA">
 <firstColumn>
 <taskFormGroup id="XAGroupShare" getLabel="GetLabel"
allowedTaskSizes="mediumSmall">
 <category id="XAShareCategory">
 <task id="XASendUsingEmailTask"
imageMso="SendAsAttachmentToMailRecipient" getLabel="GetLabel">
 <group id="XASendUsingEmailGroup"
getLabel="GetLabel" visible="XA">
 <topItems>
 <layoutContainer id="SendAsXMLLayout"
layoutChildren="horizontal">
 <button id="SendAsXMLAttachementButton"
image="send-xa-icon.ico" getLabel="GetLabel" style="large">
 <InternalClass name="EmailRendition"
rendition="xpressFormat" />
 </button>
 <layoutContainer
id="SendAsXMLDescriptionLayout" layoutChildren="vertical">
 <labelControl id="SendAsXmlDescription1"
getLabel="GetLabel"/>
 <layoutContainer
id="SendAsXmlDescriptionLayout2" layoutChildren="horizontal">
 <imageControl id="SendAsXMLBullet1Icon"
imageMso="ColorSilver"/>
 <labelControl id="SendAsXmlBullet1"
getLabel="GetLabel"/>
 </layoutContainer>
 <layoutContainer
id="SendAsXMLBullet2Layout" layoutChildren="horizontal">
 <imageControl id="SendAsXMLBullet2Icon"
imageMso="ColorSilver"/>
 <labelControl id="SendAsXmlBullet2"
getLabel="GetLabel"/>
 </layoutContainer>
 <layoutContainer
id="SendAsXMLBullet3Layout" layoutChildren="horizontal">
 <imageControl id="SendAsXMLBullet3Icon"
imageMso="ColorSilver"/>
 <labelControl id="SendAsXmlBullet3"
getLabel="GetLabel"/>
 </layoutContainer>
 </layoutContainer>
 </layoutContainer>
 </topItems>
 </group>
 <group id="XASendAsWordUsingEmailGroup" label=" "
visible="XA">
 <topItems>
 <layoutContainer id="XASendAsWordLayout"
layoutChildren="horizontal">
 <button id="XASendAsWordAttachmentButton"
imageMso="SendAsAttachmentToMailRecipient" label="Send as Word
Attachment" style="large">
 <InternalClass name="EmailRendition"
rendition="nativeFormat" />
 </button>
 <layoutContainer
id="SendAsWordDescriptionLayout" layoutChildren="vertical">
 <labelControl id="SendAsWordDescription"

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 31

getLabel="GetLabel"/>
 <layoutContainer
id="SendAsWordBullet1Layout" layoutChildren="horizontal">
 <imageControl id="SendAsWordBullet1Icon"
imageMso="ColorSilver"/>
 <labelControl id="SendAsWordBullet1"
getLabel="GetLabel"/>
 </layoutContainer>
 <layoutContainer
id="SendAsWordBullet2Layout" layoutChildren="horizontal">
 <imageControl id="SendAsWordBullet2Icon"
imageMso="ColorSilver"/>
 <labelControl id="SendAsWordBullet2"
getLabel="GetLabel"/>
 </layoutContainer>
 </layoutContainer>
 </layoutContainer>
 </topItems>
 </group>
 </task>
 <task id="XAViewXMLTask" getLabel="GetLabel"
image="export-to-xml-icon.ico">
 <group id="XAViewXMLGroup" getLabel="GetLabel">
 <topItems>
 <layoutContainer id="XAViewXMLLayout"
layoutChildren="horizontal">
 <button id="XAViewAsXML2" getLabel="GetLabel"
image="export-to-xml-icon.ico" style="large">
 <InternalClass name="PreviewRendition"
xslt="qa\xml-pretty-print.xsl" appPath="IExplore.exe" />
 </button>
 </layoutContainer>
 </topItems>
 </group>
 </task>
 </category>
 </taskFormGroup>
 </firstColumn>
 </tab>
</backstage>

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

32 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 4-4: File > XML Author submenu

Figure 4-5: File > Save & Send submenu

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 33

Hiding menu items in Word 2010 and later

Hiding Items in the Backstage View

This section describes how to hide standard Word menu items in the Backstage

view. This is typically done to hide Word features that do not apply to an XML

authoring session or that might corrupt or damage an XML Author document.

For controls on the Backstage view, XML Author only supports the following:

visible in all Word and XML Author documents •

not visible in all Word and XML Author documents •

For more information on specifying visibility, see “

Common Attributes”.

Template Stub

This is accomplished using a template stub.

In the following example template stub, the TabInfo and TabShare items are hidden

by setting the visible attribute to false.

<?xml version="1.0" encoding="utf-8"?>
<customUI
xmlns="http://schemas.microsoft.com/office/2009/07/customui">
 <backstage>
 <tab idMso="TabInfo" visible="false" />
 <tab idMso="TabShare" visible="false" />
 </backstage>
</customUI>

For Word 2010 or 2013, the template stub is named the following:

customUI14.xml

Given that a Word template is essentially a zip file. The following process adds a

folder to template (zip) file and then adds the template stub to that new folder.

To incorporate a custom template stub:

Launch Windows Explorer. 1.

Navigate to the folder where you installed Quark XML Author. This is typically 2.

the following folder:

 C:\Program Files\Quark\XML Author\

Then, navigate to the subfolder that contains the Word Templates for the 1.

schema you are authoring in. For example, the template for the Quality

Assurance configuration is located in the QA subfolder:

 C:\Program Files\Quark\XML Author\QA\

Select the desired template. For example, the QA.dotx template file. 1.

Rename the template file so that it has an extention of .ZIP. 2.

Add a folder name “customUI” to this zip file. 3.

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

34 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Add your customUI14.xml file to the”customUI” folder. 4.

Rename the template file back to its original filename by removing the .ZIP 5.

extention.

The specified items will be hidden from the Word 2010/2013 Backstage View the

next time you open an XML Author document based on this template.

Programmatically closing the Backstage View

The following configuration example shows how to programmatically close the

Backstage View. “Set the isDefinitive attribute true to close the Backstage view and

return to the workbook when you click the Save & Close button.”

<button id="DocumentAttributes" imageMso="FileProperties"
insertBeforeMso="ApplicationOptionsDialog" visible="XA"
isDefinitive="true">
 <InternalClass name="DocumentAttributes"/>
</button>

Related information:

Adding Custom Commands and Changing the Visibility of Controls in the Office 2010

Backstage View

Quick Access Toolbar (QAT)

XML Author has the following limitations and considerations in regard to the

QAT.The user can add any Word command to the QAT.

XML Author cannot hide commands on the QAT. See “Common Attributes”. XML

Author can repurpose/override all commands on the QAT except Undo. See

“Repurposing commands” and “Undo”. XML Author can disable any command on

the QAT. See “Disabling commands”.

<ribbon>

The <ribbon> node, not to be confused with its ancestor, <Ribbon>, contains all of

the information for the appearance of Word’s Office menu and the ribbon.

Common Attributes

The <ribbon> node uses one attribute, defined in Table 4‑3.

Table 4‑3: <ribbon> Attributes

Attribute Value Description

startFromScratch true|false Set to true if the entire built-in

Word ribbon structure is to be

discarded. Set to false if the

existing ribbon is to be

modified rather than built

from scratch. Defaults to false.

Quark recommends setting this

http://msdn.microsoft.com/en-us/library/ff634163%28v=office.14%29.aspx
http://msdn.microsoft.com/en-us/library/ff634163%28v=office.14%29.aspx
http://msdn.microsoft.com/en-us/library/ff634163%28v=office.14%29.aspx

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 35

Child of

The <ribbon> is the child of <customUI>.

Parent of

The <ribbon> contain the following nodes:

<officeMenu> •

<tabs> •

<contextualTabs> •

Example

The structure of the node is shown below.

<ribbon startFromScratch="false">
 <officeMenu/>
 <tabs/>
 <contextualTabs/>
</ribbon>

<separator>

The <separator> node specifies that a space will appear between two controls in the

ribbon. This is typically used to create a space between two button groups.

Common Attributes

The <separator> node uses the following “Common Attributes”:

id (Required) •

Child of

The <separator> node may be a child of the following nodes:

<group> •

Parent of

The <separator> node may not contain any child nodes.

Example

In the example below, the highlighted node creates a space between the box and

menu.

<box id="WindowButtonBox" boxStyle="vertical">
 <!-- Control details ommitted -->
</box>
<separator id="GroupWindowSeparator2"/>
<menu idMso="WindowSwitchWindowsMenuWord" size="large">
 <!-- Control details ommitted -->
</menu>

Attribute Value Description

attribute to false.

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

36 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

<splitButton>

The <splitButton> node defines a Split Button. A split button can be clicked like a

regular button, but also makes available to the user a menu of one or more

additional commands if the drop-down arrow is clicked. A child <button> node

indicates the button-click behavior. A child <menu> node contains the additional

commands that may be performed.

To use a native Word split button, specify a value for the idMso attribute.

To define a custom split button, specify a value for the id attribute.

Common Attributes

The <splitButton> node uses the following “Common Attributes”:

id or idMso (Required) •

size •

visible •

Child of

The <splitButton> node may be a child of the following nodes:

<box> •

<buttonBox> •

<group> •

<officeMenu> •

Parent of

The <splitButton> node may contain the following nodes:

<button> •

<menu> •

<toggleButton> •

Example

In the example below, the split button acts as a Selection button when clicked, but

the user can also access a menu with a different option.

<splitButton id="SelectXA">
 <button id="SelectButtonXA" imageMso="SelectMenu"/>
 <menu id="SelectMenuXA">
 <button idMso="SelectAll"/>
 </menu>
</splitButton>

<tab>

Each <tab> node contains one or more <group> nodes, which in turn contain the

array of control definitions that are presented on the ribbon tab.

Common Attributes

The <tab> node uses the following “Common Attributes”:

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 37

id or idMso (required) •

visible (required) •

The following common attributes for the <tab> node may still be used but have

been deprecated:

keytip •

label •

To define these values, use the Resources file. See “Error! Reference source not

found.”.

Child of

The <tab> node may be a child of the following nodes:

<tabs> •

Parent of

The <tab> node may contain the following nodes:

<group> •

Example

A native Word tab is defined by identifying it with the idMso attribute. The visible

attribute must be set to Word so that it will not be shown when a Quark XML

Author document is active. The example below is for the native Word Home tab.

<tab idMso="TabHome" visible="Word"/>

Native Word tabs may have child items in order to disable or enable specific items

while a Quark XML Author document is the active document. In the example

below, the Word Print Preview tab has been redefined so that the second group only

displays when a Quark XML Author document is not active.

<tab idMso="TabPrintPreview" visible="true">
 <group idMso="GroupPrintPreviewPrint" visible="true"/>
 <group idMso="GroupPrintPreviewPageSetup" visible="Word"/>
 <group idMso="GroupZoom" visible="true"/>
 <group idMso="GroupPrintPreviewPreview" visible="true"/>
</tab>

Tabs specific to Quark XML Author use the id attribute. The visible attribute must be

set to XA so that they will only be shown when a Quark XML Author document is

active. The example below shows the structure of a Quark XML Author tab.

<tab id="TabXAHome" visible="XA">
 <group id="CopyPasteXA">
 <!-- Control definitions ommitted -->
 </group>
 <!-- Additional groups ommitted -->
</tab>

Appearance order for the tabs matches the definition order.

<tabs>

The <tabs> node contains definitions for all of the ribbon tabs available in the

application.

Common Attributes

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

38 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

The <tabs> node uses no attributes:

Child of

The <tabs> node may be a child of the following nodes:

<ribbon> •

Parent of

The <tabs> node may contain the following nodes:

<tab> •

Example

Each ribbon tab is represented by a <tab> node within <tabs>. An example is shown

below.

<tabs>
 <tab id="TabXAHome" visible="XA">
 <!-- Control definitions ommitted -->
 </tab>
 <tab id="TabXAInsert" visible="XA">
 <!-- Control definitions ommitted -->
 </tab>
 <tab id="TabXAReview" visible="XA">
 <!-- Control definitions ommitted -->
 </tab>
 <tab id="TabXATable" visible="XA">
 <!-- Control definitions ommitted -->
 </tab>
 <tab id="TabXAView" visible="XA">
 <!-- Control definitions ommitted -->
 </tab>
 <tab idMso="TabHome" visible="Word"/>
 <tab idMso="TabInsert" visible="Word"/>
 <tab idMso="TabPageLayoutWord" visible="Word"/>
 <tab idMso="TabReferences" visible="Word"/>
 <tab idMso="TabMailings" visible="Word"/>
 <tab idMso="TabReviewWord" visible="Word"/>
 <tab idMso="TabView" visible="Word"/>
 <tab idMso="TabDeveloper" visible="Word"/>
 <tab idMso="TabAddIns" visible="Word"/>
 <tab idMso="TabPrintPreview">
 <!-- Control definitions ommitted -->
 </tab>
 <tab idMso="TabBlogInsert" visible="Word"/>
 <tab idMso="TabBlogPost" visible="Word"/>
</tabs>

<toggleButton>

The <toggleButton> node defines a toggle button.

To use a native Word toggle button, specify a value for the idMso attribute.

To define a custom toggle button, specify a value for the id attribute.

Common Attributes

The <toggleButton> node uses the following “Common Attributes”:

id or idMso (Required) •

image or imageMso •

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 39

showLabel •

size •

The following common attributes for the <toggleButton> node may still be used but

have been deprecated:

keytip •

label •

description •

screentip •

To define these values, use the Resources file. See “Error! Reference source not

found.”.

Unique Attributes

The <toggleButton> node uses one required attribute, defined in Table 4‑4.

Table 4‑4: <toggleButton> Attributes

Child of

The <toggleButton> node may be a child of the following nodes:

<box> •

<buttonGroup> •

<group> •

<menu> •

<splitButton> •

Parent of

The <toggleButton> node may contain the following nodes:

<InternalClass> •

<ExtensibilityMethod> •

<ShortcutKey> •

Attribute Value Description

getPressed GetPressed Defaults to no value. When set,

allows internal classes to set

the Pressed state of a ribbon

button. Currently used by the

following internal event

handlers: ChangeToList,

ChangeToPara,

InlineAttributes, and

ToggleCommentsPane. This is

always set programmatically

and is not specified by a

configuration engineer.

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

40 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

These nodes define the behavior of the control.

Example

A sample toggleButton is shown below.

<toggleButton id=”HideEmpties” imageMso=”LineSpacing” showLabel=”false”>

 <!— Control details ommitted —>

</toggleButton>

Common Attributes

Table 4‑5: Common Attributes

Attribute Value Description

description String displaying the control

description.

Deprecated. Specify the control

description in “Resource Files”.

id String to identify the control. Must be unique within the

configuration. See “Unique

Ids”.

idMso Name of a native Word

control.

Word control names can be

found in

WordRibbonControls.xslx.

image Name of the image to display

as an icon for the control.

Icons are internal to Quark

XML Author (Xpress.dll).

imageMso Name of a native Word

control; the icon from the

control is used for the Quark

XML Author control.

Word control names can be

found in

WordRibbonControls.xslx.

insertAfterMso Name of a native Word

control.

The control will be placed after

the named Word control in the

menu or group.

insertBeforeMso Name of a native Word

control.

The control will be placed

before the named Word

control in the menu or group.

label String to be displayed as the

control’s label.

Deprecated. Specify the control

label in the Resources file. See

“Error! Reference source not

found.”.

keytip 1-3 alphanumeric characters to

be displayed as the control’s

keytip.

Deprecated. Specify the control

screen tip in the Resources file.

See “Error! Reference source

not found.”.

screentip String to be displayed as the

control’s screen tip.

Deprecated. Specify the

control’s screen tip in the

Resources file. See “Error!

Reference source not found.”.

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 41

Unique Ids

The Ribbon configuration does not support duplicate IDs, therefore a feature that is

present more than once in the ribbon must have a unique ID for each occurrence of

that feature.

For example, in the DITA configuration, the Properties button exists on the Home

and View ribbon. Both occurrences of the button call the same Extensibility Method

“DocumentProperties”.

<button id="DocumentPropertiesXA" label="Properties" keytip="PR"
imageMso="FileProperties">
 <ExtensibilityMethod id="DocumentProperties" />
</button>

Attribute Value Description

showLabel false Defaults to true. If set to false,

hides the control’s label.

size large Display size of the button, split

button, or toggle button.

Defaults to small.

sizeString One or more X characters Specifies the size of the drop-

down control. For example, a

value of XXXX indicates a

width of four characters.

title String to be displayed as the

control’s title.

Deprecated. Specify the

control’s title in the Resources

file. See “Error! Reference

source not found.”.

visible false|true|Word|xa Determines when the control

is available. Settings may be

combined using the pipe

character.

false: control is not visible in

all Word and XML Author

documents.

true: control is visible in all

Word and XML Author

documents.

Word: control is only visible in

Word documents.

xa: control is only visible in

XML Author documents.

OLEWordDocument: control

is only visible in embedded

Word documents.

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

42 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

<button id="ViewDocumentPropertiesXA" imageMso="FileProperties"
label="Properties" keytip="DP">
 <ExtensibilityMethod id="DocumentProperties" />
</button>

Undo

The user must not be allowed to invoke the Undo feature in Microsoft Word

because:

Standard options/techniques for preventing a user from invoking a Word command

include hiding it, disabling it, and repurposing or overriding it. However, Undo is a

unique and special case which must be handled differently than other Word

commands.

On the QAT, the only Word command that cannot be repurposed/overridden is

Undo.

QAT is the only UI in which we are unable to hide Word commands. Now we can

disable a Word idMso command across all user interfaces in Word including:

Ribbon, Toolbar, Menus, and Quick Access Toolbar.

Printing

Several of the Word page setup features are not XML aware and therefore should be

excluded from the user interface. If that is not possible, then the user must be

warned not to use those features.

Word 2010 and later

In the Backstage View for Print, the Quark XML Author Page Setup feature is

provided. This feature is used to specify page orientation and layout settings specific

to XML Author documents. In that view, Word’s Orientation button and Page Setup

link are not XML aware and therefore should not be used. The user is provided that

warning

CONFIGURATION: RIBBON, OFFICE MENU, AND BACKSTAGE VIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 43

Figure 4‑6: Backstage View for Print

Hiding/Disabling Ribbon Tabs for Third-Party Software

The Quark XML Author add-in cannot influence the position or visibility of the

ribbon tabs of a third-party add-in. Therefore, disabling the add-in is the only way

to remove its ribbon tab when Quark XML Author is in focus/active.

This is accomplished using DisableTemplateAddins. See “DisableTemplateAddins”.

APPLICATION CONFIGURATION: INTERNAL CLASSES

44 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Application Configuration: Internal
Classes

Internal Classes are functions that are built into Quark XML Author. In many cases,

they replace similar native Word features, such as Insert Table.

The InternalClass element’s attributes contain the name of the application class that

will handle the operation when the user selects the menu item/clicks the

button/invokes the shortcut key associated with the command. The name attribute

is required. Depending on what class is used, there may be other required and

optional attributes. This chapter defines the internal classes supported by Quark

XML Author and the additional parameters, if any, that can be used with them. The

example below shows how DocumentOpen can be implemented.

<InternalClass name="DocumentOpen" filter="Word Documents

(*.doc)|*.doc|Quark XML Author Documents (*.xml)|*.xml"/>

As you can see, DocumentOpen requires an additional parameter, which is specified

as the InternalClass element’s filter attribute.

AcceptRevision

Accepts the currently selected document revision or, if the acceptAll parameter is

present and set to true, accepts all document revisions. If neither parameter is

present, any revision(s) in the current selection will be accepted.

Table 5‑1: AcceptRevision Parameters

Parameter Required Definition

acceptAll no Boolean. Set to true to accept

all revisions in the document.

Defaults to false.

keyCode no Integer. Specifies the keyCode

for a specific document node.

If keyCode is a valid node,

AcceptRevision will accept

revision(s) for the node

specified.

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 45

AssignAttribute

Assigns a value to a document attribute or document element attribute. If the

attribute is not found on the current document, the nearest ancestor element which

contains this attribute is located and the attribute value is assigned to that element

(if found).

Table 5‑2: AssignAttribute Parameters

ChangeToList

Changes the selected element to a list item. If the selection contains multiple

elements, changes all of them to list items. There are some restrictions depending

on the selection of elements in the user interface:

Top-level selection elements have to be at the same level and of same parent. In •

other words, the user cannot select list items of different lists, nor can the user

select a para type element with depth=x and another non-descendant para with

depth <> x.

Parameter Required Definition

attributeName yes String. The document attribute

or document element attribute,

as specified in the document

class schema, to which a value

will be assigned.

attributeValue no String. Specifies the value that

will be assigned to the attribute

named by the attributeName

parameter.

generateUndo no Specifies whether or not an

undo event should be

generated for this attribute

assignment. Defaults to false.

namespace no String. Specifies the namespace

of the attribute named as the

value of attributeName.

toggleGroup yes String. Specifies the name of

the toggle group to which the

menu item containing the

InternalClass belongs.

xpath no String. If an xpath for a

particular element is provided,

it is used as the starting point

for finding the containing

attribute specified by the

attributeName. If it is not

provided the XomCurrentNode

is used.

APPLICATION CONFIGURATION: INTERNAL CLASSES

46 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

The top-level selection can ONLY include para or list type selections AND cannot •

include both para type and list type selections.

The selection for list type elements must include the first or the last list item, or •

both.

Top level selections must not be defined with minOccurs=1, maxOccurs=1/1+. •

The presence of any required child elements (for list type elements, both •

required children under list container as well as required children under the para

type child) disqualifies them from being changeType candidates.

Both of these element types must appear as optional unbounded (minOccurs=0, •

maxOccurs=unbounded) children under their parent definitions.

There can be any optional descendant structure amongst the para/list types. In •

that case, if the current selection does have a descendant structure for each of

the top-level para/list type elements, each of those instance structures would

have to be “equivalent” to the schema descendant structure of the

corresponding para or list type for a target to be a valid change type

Other specific behavior depends on the values of the parameters.

Table 5‑3: ChangeToList Parameters

Parameter Required Definition

merge no Boolean. Set to true to force

new list items to merge with

the adjacent list (if one exists)

upon conversion rather than

being inserted as the sole child

of a new list. Defaults to false.

target yes String. Comma-delimited list

of list elements that may be

used. Specifies the XML name

of the list element to use as the

parent of the changed element.

Multiple levels of list can be

specified by providing a

comma separated list of list

elements. The exact list

element that will be used is

dependent on the XAS and the

location of the element to be

changed. In the example

below, the selected element

could be changed to an item in

a bullet list or a sub-list.

<InternalClass

name="ChangeToList"

target="bulletul,subbull

etul" merge="true"/>

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 47

ChangeToPara

Changes the selected element (usually a list item) to a paragraph. If the selection

contains multiple list items, all are converted to separate paragraphs.

Table 5‑4: ChangeToPara Parameters

ClearUndoStack

Clears the stack of undo actions used by the Quark XML Author’s Undo function.

Does not use parameters.

Parameter Required Definition

Note that there is no space

after each comma.

Technically, a “list” type

element is a specialized

element identified by the

following schema pattern in

the schema: Invisible Section

with a 1+ sequence of

(visible) para type element

children. Although list

elements are discussed here,

the target element can be any

element as long as it follows

the same pattern.

Parameter Required Definition

target yes String. Specifies the XML name

of the paragraph element. In

the example below, the

paragraph element is <p>.

<InternalClass

name="ChangeToPara"

target="p"/>

A paragraph type element is

identified in the schema by the

presence of the <para> tag in

the schema. Presence of the

excludeFromChangeToContext

Menu attribute on an

ElementDef can be used to

filter out any unwanted items

from being potential ChangeTo

candidates.

APPLICATION CONFIGURATION: INTERNAL CLASSES

48 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Copy

Copies the selection to the clipboard. Does not use parameters.

CreateRendition

Creates a document rendition according to the values specified by its parameters.

Table 5‑5: CreateRendition Parameters

Parameter Required Definition

destination no String. Specifies the path to

which the exported file and

embedded media should be

saved. The path may be

absolute or relative to the

application folder. It may also

include a default file name. If

the name is omitted, the Save

As dialog will display, targeted

at the specified location. If this

attribute is omitted, the Save

As dialog will display and the

user will have to specify the

location and file name.

Supports two patterns: {cd}

(Current location of active

document) and

{ApplicationData}

(Environment variable-

APPDATA). The destination

can either be one of these

patterns or it can start with

them.

expandRef no Boolean. Indicates whether or

not the reference elements

should be expanded into the

components they reference

before processing the XSLT. Set

to true, to expand all

references. Defaults to false.

filter no String. When specified, if

destination is omitted, OR if

{cd} is specified and one

doesn’t exist (document hasn’t

been saved), user is prompted

with a Save As dialog. Within

this dialog, the ‘Save as type’

filter is specified by this

attribute. See below for more

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 49

filter

The Save As dialog is displayed only if the destination parameter has no value. The

optional filter attribute, if populated, determines what filters will be present in the

Save as Type drop-down box in the Save As dialog. The value of the filter attribute

is a resource ID in the Resources file. See “Error! Reference source not found.”.

Parameter Required Definition

information.

params no String. Used to supply

parameter values to the

stylesheet. Parameters are

specifies as name=value pairs

separated by the pipe character

(|). For example:

“name=value | name2=value2 |

...”

supportPath no String. When a document is

rendered/previewed, all files

under the folder specified will

be copied to the final

destination of the rendered

document. This process will

overwrite any files of the same

name and skip over files that it

cannot copy. Specified as either

a full path to an existing

directory or a relative path to

an existing directory under the

Quark XML Author application

folder.

xpath no String. Apply the transform to

a fragment of the current

active document pointed to by

the supplied xpath instead of

the entire document. The

xpath must be relative to the

ExportedRoot.

xslt no String. Specifies the path and

name of the transform

stylesheet. The path may be a

URL, an absolute path, or a

path relative to the application

folder.

APPLICATION CONFIGURATION: INTERNAL CLASSES

50 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

The resource ID identifies a string list of filter types. Each filter type comprises two

parts: the filter text and the filter definition, which are separated by the pipe

character (|).For example, to specify a filter to create a html rendition, you would

use the pair shown below as the value of the “HTML Rendition” resource ID:

HTML Rendition = HTML Document (*.html)|*.html

This would produce the filter shown in Figure 5‑1 .

Figure 5‑1: Save As dialog

Of course, the actual resource ID is arbitrary and can have any name you want. The

filter is specified in this way to aid in localization.

If neither destination nor filter are specified, the rendition is saved to the Quark

XML Author temp directory with a Quark XML Author-generated filename, e.g.

preview_1.html.

StyleSheet Child Nodes

CreateRendition may have any number of StyleSheet child nodes. This provides the

ability to perform chained transformations with the output of one stylesheet

provided to the next. Any XSLT parameters that need to be supplied to the

individual stylesheet can be specified by the params attribute as shown in the

example shown below.

<Stylesheet xslt="stylesheet name"

params="name1=value1|name2=value2"/>

Using CreateRendition to Load External Objects

CreateRendition supports configurable stylesheet extensions that allow the

execution of .NET code from within the transform itself. When CreateRendition is

invoked, Quark XML Author inspects the top of the XSLT for <?XpressExtension?>

processing instructions. For each instruction that is found (multiple instructions are

allowed), the .NET object is loaded and made available to the transform. Additional

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 51

parameters required by the .NET object can be supported using the “params”

attribute.

The format of the XSLT processing instruction is shown below:

<?XpressExtension namespace="ns" assembly="Assembly"

object="Invision.objectname" ?>

Cut

Cuts the selection from the document and copies it to the clipboard. Does not use

parameters.

DeleteComment

Deletes the currently selected comment (or comment for the current selection).

Table 5‑6: DeleteComment Parameters

Parameter Required Definition

deleteAll no If a value is specified for the

query attribute, then deleteAll

is ignored. Set to true to delete

all comments in the current

document. If set to false, the

first comment in the current

selection is deleted. Defaults to

false.

query no Value is a regular expression

that allows extracting selective

comment nodes. For example:

<InternalClass

name="DeleteComment"

query="author='Some

Author|Another Author'

&& initial='AA' ||

customAttr='customValue1

|customValue2|customValu

e3'/>

The query attribute value is

expressed as a series of

property=value pairs, where

the named property is either a

property of Word comments or

any custom attributes defined

in the configuration. Property

values must be enclosed in

single quotation marks. AND

(&&) and OR (||) operators can

APPLICATION CONFIGURATION: INTERNAL CLASSES

52 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

DeleteTable

Deletes the currently selected table (or the table in which the cursor is presently

located). Does not use parameters.

DeleteTableCol

Deletes the table column in which the cursor is located. Does not use parameters.

DeleteTableRow

Deletes the table row in which the cursor is located. Does not use parameters.

DocumentAttributes

Opens the Attribute Panel for the root element of the Document. Does not use

parameters.

DocumentClose

Closes the document.

Table 5‑7: DocumentClose Parameters

DocumentNew

Creates a new document of the specified type.

Table 5‑8: DocumentNew Parameters

Parameter Required Definition

be used in the expression.

Parameter Required Definition

filename no String. Specifies the name of a

file to be closed rather than the

currently active document.

ignoreChanges no Boolean. Set to true to allow

the user to close the document

without being prompted to

save changes. Set to false to

prompt the user to save.

Defaults to false.

Parameter Required Definition

defaultName no String. Specifies a default name

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 53

DocumentOpen

Invokes the Open dialog.

Table 5‑9: DocumentOpen Parameters

Parameter Required Definition

for the new document. The

default name is created from a

regular expression given in

curly brackets. A string pattern

can be appended to the regular

expression value. For example,

{NOW(yyyyMMdd)}-???.xml

The pattern in {} is a regular

expression. NOW specifies

today and the string in

brackets specifies the date

pattern to be used. The string

after the } is appended to the

date. {NOW(yyyyMMdd)}-

INVISION.xml specifies the

current date, with –

INVISION.xml appended to

the date. If defaultName is not

specified, the value to be used

is pulled from the

NewDocumentTitle config

resource and the appropriate

number (1,2,3 etc.) is added to

the string. See “Resource Files”

for information about the

NewDocumentTitle resource

value.

templateXml yes String. Specifies the path and

filename of the template file

from which the document will

be created. The path may be

absolute or relative to the

application folder.

Parameter Required Definition

filter no String. See below for more

information.

fullfilepath no String. Specifies the fully

qualified path of the document

to open or specifies the folder

that should be displayed in the

APPLICATION CONFIGURATION: INTERNAL CLASSES

54 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

filter

If it is populated, the Open dialog box’s Files of type drop-down box will contain

filters the attribute value specifies. The value of the filter attribute is a resource ID in

the Resources file. See “Error! Reference source not found.”.

The resource ID identifies a string list of filter types. Each filter type comprises two

parts: the filter text and the filter definition, which are separated by the pipe

character (|). For example, to specify a filter to display only Word documents, (.DOC

and .DOCX) you would use the pair shown below as the value of the

“OpenWordDocs” resource ID:

OpenWordDocs = Word Document (*.doc)|*.doc This would produce the filter

shown in Figure 5‑2.

Figure 5‑2: Open Dialog

Each filter set is likewise separated by a pipe character. For example, if we wanted to

add Quark XML Author Documents (*.xml)|*.xml to the example already given

above, it would look like the example below.

OpenWordDocs = Word Document (*.doc)|*.doc|Quark XML Author

Document (*.xml)|*.xml

It is always wise to include a filter that shows All Files (*.*). Adding this filter to the

example above produces the example below.

OpenWordDocs = Word Document (*.doc)|*.doc|Quark XML Author

Document (*.xml)|*.xml|All Files (*.*)|*.*

Parameter Required Definition

Open dialog.

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 55

Of course, the actual resource ID is arbitrary and can have any name you want. The

filter is specified in this way to aid in localization.

DocumentOpenWord

Invokes the native Word FileOpen dialog for opening documents. The dialog uses

default Word filters and does not use any Quark XML Author document filters.

Primarily used for accessing a file on a remote web server via native Word’s native

WebDAV capabilities. For a remote file, the function attempts access using the

Windows default credentials to download the file and if unsuccessful, prompts for

username/password. The login prompt repeats if an Unauthorized status code is

received on a WebDav open request. Does not use parameters.

DocumentSave

Saves the current document.

Note that Quark XML Author leverages Word’s native

AutoSave functionality so that documents are automatically saved periodically

according to the setting in the user’s Word environment.

Using DocumentSave by itself simply saves the document. However, the following

parameters can be passed to modify the save function.

Table 5‑10: DocumentSave Parameters

Parameter Required Definition

defaultFilepath no String. If the document has

never been saved, then the

SaveAs feature is invoked and

this parameter is used. Specifies

the folder that should be used

as the Save In folder in the

Save As dialog. The dialog uses

this path as the current folder

of the dialog. The user is not

restricted to this path.

transform no String. Specifies the location

and filename of the default

stylesheet for the document

class. The value of this

parameter may be a URL, an

absolute path, or a path

relative to the application

folder. The file name must be

APPLICATION CONFIGURATION: INTERNAL CLASSES

56 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Also these parameters overwrite any values specified in the DefaultSaveOptions

node.

DocumentSaveAs

Invokes the Save File dialog box so that the user can select a location and filename

for the document. Supports WebDAV saves.

Table 5‑11: DocumentSaveAs Parameters

Parameter Required Definition

included.

filter no String. If the document has

never been saved, then the

SaveAs feature is invoked and

this parameter is used. See

“DocumentSaveAs” for more

information.

Parameter Required Definition

filter no String. If the document has

never been saved, then the

SaveAs feature is invoked and

this parameter is used. See

below for more information.

defaultFilepath no String. Specifies the folder that

should be used as the Save In

folder in the Save As dialog.

The dialog uses this path as the

current folder of the dialog.

The user is not restricted to

this path.

transform no String. Specifies the location

and filename of the default

stylesheet for the document

class. The value of this

parameter may be a URL, an

absolute path, or a path

relative to the application

folder. The file name must be

included.

useWordDialog no Boolean. Specifies whether or

not the Word Dialog should be

displayed. Set to true to allow

the user to save the Quark

XML Author document as a

Word document.

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 57

filter

The optional filter attribute, if populated, determines what filters will be present in

the Save as Type drop-down box in the Save As dialog. The value of the filter

attribute is a resource ID in the Resources file. See “Error! Reference source not

found.”.

The resource ID identifies a string list of filter types. Each filter type comprises two

parts: the filter text and the filter definition, which are separated by the pipe

character (|). For example, to specify a filter to save as a Word document, you would

use the pair shown below as the value of the “SaveWordDocs” resource ID:

SaveWordDocs = Word Document (*.doc)|*.doc

This would produce the filter shown in Figure 5‑3.

Figure 5‑3: Save As Filter

Of course, the actual resource ID is arbitrary and can have any name you want. The

filter is specified in this way to aid in localization.

EmailRendition

Creates a document rendition according to the values specified by its parameters

and invokes Send to Mail Recipient with the document rendition as an attachment.

Parameter Required Definition

fullfilepath no String. Specifies the fully

qualified path of the document

to open or specifies the folder

that should be displayed in the

Open dialog.

APPLICATION CONFIGURATION: INTERNAL CLASSES

58 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

All of EmailRendition’s parameters are optional. However, if

the rendition parameter is omitted, at least one of the other parameters must be

used.

Table 5‑12: EmailRendition Parameters

Parameter Required Definition

destination no String. Specifies the path to

which the exported file and

embedded media should be

saved. The path may be

absolute or relative to the

application folder. It may also

include a default file name. If

the name is omitted, the Save

As dialog will display, targeted

at the specified location. If this

attribute is omitted, the Save

As dialog will display and the

user will have to specify the

location and file name.

expandRef no Boolean. Indicates whether or

not the reference elements

should be expanded into the

components they reference

before processing the XSLT. Set

to true, to expand all

references. Defaults to false.

filter no String. See below for more

information.

params no String. Used to supply

parameter values to the

stylesheet. Parameters are

specifies as name=value pairs

separated by the pipe character

(|). For example:

“name=value | name2=value2 |

...”

rendition no String. Specifies the file format

value of the Mail Attachment.

Valid values are nativeFormat

or xpressFormat:

nativeFormat, which sends as a

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 59

filter

The Save As dialog is displayed only if the destination parameter has no value. The

optional filter attribute, if populated, determines what filters will be present in the

Save as Type drop-down box in the Save As dialog. The value of the filter attribute

is a resource ID in the Resources file. See “Error! Reference source not found.”.

The resource ID identifies a string list of filter types. Each filter type comprises two

parts: the filter text and the filter definition, which are separated by the pipe

character (|). For example, to specify a filter to save as a Word document, you would

use the pair shown below as the value of the “SaveWordDocs” resource ID:

SaveWordDocs = Word Document (*.doc)|*.doc

This would produce the filter shown in “Filter Figure”.

Parameter Required Definition

.doc file; or xpressFormat,

which attaches the Quark XML

Author .xml file. For example:

rendition=”xpressFormat”

or

rendition=”nativeFormat”

Using rendition is preferred

over omitting it. However, if it

is omitted, at least one of the

other parameters must be

included.

xslt no String. Specifies the path of the

transform stylesheet The path

may be a URL, an absolute

path, or a path relative to the

application folder.

APPLICATION CONFIGURATION: INTERNAL CLASSES

60 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 5‑4: Save As Filter

Each filter set is likewise separated by a pipe character. For example, if we wanted to

add Quark XML Author Document (*.xml)|*.xml to the example already given

above, it would look like the example below.

SaveWordDocs = Word Document (*.doc)|*.doc|Quark XML Author

Document (*.xml)|*.xml

It is always wise to include a filter that shows All Files (*.*). Adding this filter to the

example above produces the example below.

SaveWordDocs = Word Document (*.doc)|*.doc|Quark XML Author

Document (*.xml)|*.xml|All Files (*.*)|*.*

Of course, the actual resource ID is arbitrary and can have any name you want. The

filter is specified in this way to aid in localization.

If neither destination nor filter are specified, the rendition is saved to the Quark

XML Author temp directory with a Quark XML Author-generated filename, e.g.

MyDoc.doc.

EmphasisAction

Used to apply emphasis.

Table 5‑13: EmphasisAction Parameters

Parameter Required Definition

emphasis yes String. Specifies the name of

the emphasis that should be

applied. Must be an emphasis

style defined in the document

schema. In the example below,

the style bold would be

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 61

EmphasisHandler

Invokes the Quark XML Author emphasis handler for displaying a combo box of

allowed emphasis items at the current location. Does not use parameters.

FindAndReplace

Provides Find, Replace, and navigation functionality for Quark XML Author

documents similar to native Word functionality. There are some important

differences in functionality:

The Replace button is disabled for find phrases which the schema makes illegal •

to be replaced. A tooltip shows the reason for disabling the button.

The Replace All button will only replace selections which are editable and ignore •

all non-editable selections.

The Goto list box is restricted to the following 6 types: Page, Section, Line, •

Comment, Table, and Graphic.

The Enter page number text box in the Goto tab has the following restrictions: •

The text must be a numeric value. •

The numeric value can be preceded with a + or a - to indicate a relative •

Goto.

This behavior is a subset of the features Word offers which supports a wider variety

of formats in the text box. For example, s2p5 is a valid value and takes the user to

the page five in section two of the Word document.

Parameter Required Definition

applied to the selected text.

<InternalClass

name="EmphasisAction"

emphasis="bold"/>

<InternalClass

name="EmphasisAction"

emphasis="emphasis">

 <SubStyle key="style"
value="bold"/>

</InternalClass>

key no String. Specifies sub-style

values for a particular

emphasis.

value no String. Specifies sub-style

values for a particular

emphasis.

APPLICATION CONFIGURATION: INTERNAL CLASSES

62 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

The replace/Replace all will not work on read-only (i.e accessMode=Review) •

documents.

The gotoNext() and GotoPrevious() functionality still invokes the Word’s •

Goto/Find Next. The browse object in the lower right corner of the documents

on the vertical scrollbar (the round icon and the two arrow buttons around it)

still invoke Word functions.

Table 5‑14: FindAndReplace Parameters

FormattingAction

Used to apply/remove character formatting, font color or highlight color for the

selected word, phrase or text elements.

Typography such as bold and italic may be applied to a word, phrase or multiple

text elements. This formatting feature is similar to the formatting feature in Word.

From the ReadMe description: In Business Document solutions, the ability to apply

stylistic emphasis such as bold and italics has been replaced with new paragraph

styling in a new feature called Character Formatting. This applies to: Bold, Italic,

Underline, Strikethrough, Superscript, and Subscript. These styles are applied using

the same user controls as in previous versions of XML Author. For example, the Bold

button on the Home ribbon. Different from the previous inline elements version of

these styles, metadata may not be applied to these new styles. In Business

Document solutions, text foreground color may be applied to a word, phrase or

multiple text elements. This is done using the Font Color feature. In Business

Document solutions, text background color may be applied to a word, phrase or

multiple text elements. This is done using the Text Highlight Color feature.

Table 5‑15: FormattingAction Parameters

Parameter Required Definition

tab yes String. The required tab

parameter may have one of

three values: Find, Replace,

and Goto. These values refer to

the three tabs available in the

Find and Replace dialog. The

value specified defines the

default tab to be presented

when the dialog is displayed to

the user.

Parameter Required Definition

formattingName yes String. Specifies the name of

the formatting that should be

applied. Must be a name of the

formatting style defined in the

document schema.

From the Business Documents

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 63

Parameter Required Definition

XAS schema:

<Formatting>

 <Bold name="b"

friendly="Bold"/>

 <Italic name="i"

friendly="Italic"/>

 <Underline name="u"

friendly="Underline"/>

 <Strikethrough

name="strikethrough"

friendly="Strikethrough"

/>

 <Subscript name="sub"

friendly="Subscript"/>

 <Superscript

name="sup"

friendly="Superscript"/>

 <FontColor

name="color"

friendly="Font Color"

colorAttributeName="text

forecolor"/>

 <HighlightColor

name="highlight"

friendly="Highlight

Color"

colorAttributeName="high

lightcolor"/>

</Formatting>

These definitions are available

to all configurations and are

enabled by default in Business

Documents configuration.

Serialization name is “name”.

For example, “b” for Bold.

However, custom

configurations can customize

the name and friendly name of

formatting definitions..

Example calls:

<InternalClass

name="FormattingAction"

APPLICATION CONFIGURATION: INTERNAL CLASSES

64 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

FormattingActionChangeCase

Used to change case for the selected word, phrase or text elements. This formatting

feature is similar to the formatting feature in Word.

Table 5‑16: FormattingActionChangeCase Parameters

FormatTableCellShading

Invokes the Cell Shading dialog, which allows users to assign a background color to

the current selection of table cells. Does not use parameters.

This requires that cells of a table section are defined with an attribute of the

datatype tableCellBackgroundColor. See “Table 11‑8”. For this discussion, let’s refer

to this as simply the “color” attribute.

Parameter Required Definition

formattingName="bold"

colorValue="null"/>

<InternalClass name="

FormattingAction "

formattingName ="color"

colorValue="0000FF" />

colorValue no String. For formattingName

equals color or highlight, this

specifies the color name or

RGB value of the color that

should be applied to the

selection. If the selection

already has a color and the

current color is different than

this becomes the new color.

The color value could be in

hex string or color name

string. Example:”0000FF”,

“blue” etc.

Parameter Required Definition

changeCase yes String. Specifies the name of

the formatting that should be

applied.

Example calls:

<InternalClass name="

FormattingAction

ChangeCase" changeCase

="titlesentence" />

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 65

The user’s color selection is applied to the selected cells on the Word canvas and is

applied to the color attribute in the XML for each selected cell. However, if the user

selects “No Color”, then the default color is applied to the Word canvas and the

color attribute is removed in the XML.

In the user interface, the toolbar or ribbon button is enabled if the current cell or

selected cells are editable and are defined with a color attribute.

In the Cell Shading dialog, the colors available can be specified in the attribute

definition. This is typically used to limit the user to a specific set of colors. For

example, only three specific colors are available for header cells. If no colors are

specified in the attribute definition, then the colors available are Word’s stock colors

for cell shading.

Selections containing cells with different color attribute definitions

In this situation, the colors available in the Cell Shading dialog are the intersection

of the colors available for each different color attribute definition. The colors that

are found to be in common are displayed in the user interface. If the intersection is

zero colors, then no colors are available and the only action the user can take is to

select “No Color. The system removes the color attribute for all selected cells.

IndentElement

Triggers indent/decrease indent behavior for the current element, depending on the

value of the indent parameter.

Table 5‑16: IndentElement Parameters

Parameter Required Definition

indent yes String. Valid values are:

IncreaseIndent and

DecreaseIndent. When the

value of indent is

IncreaseIndent,

IndentElement changes the

selected element to the

element type specified by the

element definition’s

increaseIndent attribute.

When the value of indent is

DecreaseIndent,

IndentElement changes the

selected element to the

element type specified by the

element definition’s

decreaseIndent attribute.

Consider the following

element structure:

<ElementDef name="List2"

APPLICATION CONFIGURATION: INTERNAL CLASSES

66 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Parameter Required Definition

xmlname="list"

friendly="Sub List"

visible="false">

 <Section>

 <Sequence

maxOccurs="unbounded">

 <SectionType

name="ListItem2"

increaseIndent="ListItem

3"

decreaseIndent="ListItem

"/>

 </Sequence>

</Section>

<Attributes/>

</ElementDef>

If a ListItem2 element is

selected, invoking the first

example below would change

the element to a ListItem3.

Invoking the second example

below would change the

element to a ListItem.

Example 1: Increase Indent

<InternalClass

name="IndentElement"

indent="IncreaseIndent"/

>

Example 2: Decrease Indent

Note that multiple targets for

Increase/Decrease Indent may

be specified in the

increaseIndentand

decreaseIndent attributes of

SectionType. See “SectionType”

on page 232 for details.

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 67

InlineAttributes

Toggles the display of portionmarks on or off.

Table 5‑17: InlineAttributes Parameters

InsertXACrossref

This applies to embedded Word documents only.

Inserts a cross-reference link at the current cursor location in the embedded Word

document if a valid target is on the clipboard. The valid target is a destination in an

XML Author document. The destination may be in the document that is the parent

of the embedded Word document or it may be another XML Author document.

Does not use parameters.

Example:

<!-- Internal class to insert Cross-Reference when working in an
embedded OLE document -->
<button id="InsertXACrossRef" imageMso="CrossReferenceInsert"
size="large">
 <InternalClass name="InsertXACrossRef"/>
</button>

InsertComment

Inserts a comment into the document. Does not use parameters.

InsertColumnBreak

Toggles the columnBreak attribute value on the next visible element following the

cursor location between true and false. See section 12.3 for information on the

columnBreak attribute. Does not use parameters.

InsertCustomLink

Inserts a cross-reference link at the current cursor location if a valid target is on the

clipboard. Does not use parameters.

Example:

<!-- Internal class to insert Cross-Reference when working in an
XML Author document -->
<button id="InsertCustomLink" imageMso="CrossReferenceInsert"
size="large" getEnabled="GetEnabled">

Parameter Required Definition

Type no String. Valid values are PreText

and PostText which specifies

the type of portionmark to be

affected. Defaults to PreText.

See Section 9.1 for information

about portionmarks.

APPLICATION CONFIGURATION: INTERNAL CLASSES

68 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 <InternalClass name="InsertCustomLink"/>
</button>

InsertElement

The internal class InsertElement is used only within the DocConfig file to specify

elements to be inserted, and what child elements to automatically insert. For

example, a Section element might have a mandatory Title element, to be followed

by one or more Paragraph elements. When the user inserts a Section element, the

syntax of the displayName value will instruct Quark XML Author to insert the

required child elements. You can also specify optional elements to be automatically

inserted.

displayName

Required. String. The displayName parameter value uses the following syntax:

<InternalClass name="InsertElement"

displayName="Element[Child[Grandchild/Grandchild/Grandchild]]">

Brackets

The [] brackets signifies a parent-child relationship, and the slash indicates sibling

relationships. So the example cited above, of a Section with mandatory Title and

one or more paragraphs, would look like the following example:

<InternalClass name="InsertElement"

displayName="Section[Title/Paragraph()]">

Parenthesis

Parenthesis can be used to indicate content objects:

Table type element

A tilde (~) indicates a table type element.

<InternalClass name="InsertElement" displayName="CALS Table(~)"

externalMethodFriendly="true"/>

MediaContent object

An asterisk (*) indicates a MediaContent object, such as shown below.

<InternalClass name="InsertElement" displayName="Quark

Extensions[Local Media[Media(*)/Media Caption]"/>

Default text value

Parenthesis can also contain text that will indicate a default text value. This value

will override any default value specified in the XAS:

<InternalClass name="InsertElement" displayName="Quark

Extensions[Local Media[Media(*)/Media Caption(Cartoon here)"/>

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 69

Reserved Characters

When specifying displayName for either “InsertElement”or “Insert Emphasis” note

that there are several special characters reserved by the system. If these characters

are used as part of the displayName value, you must replace them with the

corresponding code shown in the table below.

Table 5‑18: Control Codes for Reserved Characters

For example, the InsertEmphasis Internal class below would insert CH2(parens)

into the document:

<InternalClass name="InsertEmphasis"

displayName="Symbol(CH2%#lc%#parens%#rc%#)"/>

These codes can also be used in the schema when specifying default text for an

ElementDef. (See section 14).

Insert Emphasis

Inserts an emphasized text node into the specified XML node at the cursor position.

Table 5‑19: InsertEmphasis Parameters

Character Description Code

/ Forward slash %#fs%#

[Left Square Bracket %#ls%#

] Right Square Bracket %#rs%#

{ Left Curly Bracket %#lc%#

} Right Curly Bracket %#rc%#

* Star %#st%#

~ Tilde %#ti%#

> Greater Than %#gt%#

< Less Than %#lt%#

‘ Apostrophe %#apos%#

“ Quotation Mark %#quot%#

& Ampersand %#amp%#

Parameter Required Definition

displayName yes The friendly name of the

emphasis as defined in the

schema and any text to insert

are provided in the required

displayName attribute. The

friendly name is provided first,

with text to insert in

APPLICATION CONFIGURATION: INTERNAL CLASSES

70 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

InsertEndNote

Inserts an end note emphasis named in the parameter. End notes can be inserted in

any element type. There must be a corresponding EndNote element definition and

an emphasis style defined for the notes themselves. See section 14.8 for a full

discussion about configuring end note capability.

Table 5‑20: InsertEndNote Parameters

InsertEntityReference

Invokes the Insert Entity Reference dialog, which allows users to select an entity

reference to insert into the document. Does not use parameters.

InsertFootnote

Inserts a footnote at the current cursor location.

Parameter Required Definition

parenthesis. For example:

<InternalClass

name="InsertEmphasis"

displayName="Company([Co

mpany Name])"/>

The example above will insert

[Company Name] at the

cursor location where the

Company emphasis is allowed.

Can be used as a placeholder

for XML data when

transforming Quark XML

Author document to output.

The value of displayName for

InsertEmphasis has the same

restrictions regarding special

characters as it does for

InsertElement. See Table 5‑18:

Control Codes for Reserved

Characters.

Parameter Required Definition

emphasisName yes String. Specifies the name of

the emphasis defined for the

note.

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 71

Table 5‑21: InsertFootNote Parameters

InsertHyperlink

Invokes the Quark XML Author Insert Hyperlink dialog. The resulting Text to

display is inserted into the document, emphasized, and its href attribute assigned

the value of the Address. As with Word, when the current selection is within the

link emphasis, invoking InsertHyperlink allows editing the link. Does not use

parameters.

InsertInlineElement

Allows inserting of an inline element (media or OLE) for a para type element.

Table 5‑22: InsertInlineElement Parameters

Parameter Required Definition

noteType no String. Specifies whether the

inserted note should be a

Footnote or Endnote. Defaults

to Footnote.

Parameter Required Definition

displayName yes String. Specifies the

friendly name of the

inline element that

should be inserted.

<!-- displayName is the

friendly name of any

inline element (any

element that is defined

as an OLE or

media(reference or

embedded)).For reference

media only invisible

containers with a

required Media child is

supported as a valid

inline element-->

<InternalClass

name="InsertInlineElemen

t" displayName="Math

Equation"/>

APPLICATION CONFIGURATION: INTERNAL CLASSES

72 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

InsertPageBreak

Toggles the pageBreak attribute value on the next visible element following the

cursor location between true and false. See section 12.3 for information on the

pageBreak attribute. Does not use parameters.

InsertSectionBreak

Toggles the sectionBreak attribute value on the next visible element following the

cursor location between true and false. See section 12.3 for information on the

sectionBreak attribute.

Table 5‑23: InsertSectionBreak Parameters

InsertTable

Displays the Insert Table dialog. For more information about elements that affect

this dialog, see “TableStyle” and “Template”.

Table 5‑24: InsertTable Parameters

Parameter Required Definition

breakType no String. Specifies the type of

section break to be inserted.

May be set to either

sectionBreaknextPage or

sectionBreakContinuous.

Defaults to

sectionBreaknextPage if not

specified.

columnCount no String. Specifies the number of

columns in the section break.

The value for this attribute

should be an integer from 1 to

12. When columnCount is

used, it is recommended (not

required) that breakType

attribute is set to

sectionBreakContinuous. See

section 5.555.55, SetColumns,

Parameter Required Definition

definition yes String. Specifies the name of

the table definition that should

be used for the new table. See

“Table” for more information.

style no String. Specifies the name of

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 73

InsertTableColumn

Insert a new column in the table.

Table 5‑25: InsertTableColumn Parameters

InsertTableRow

Insert a new row in the table.

Table 5‑26: InsertTableRow Parameters

ManageTextEntities

Invokes the Manage Text Entities form, which allows users to add, edit, and remove

content entities and values. Does not use parameters. This applies to internal

content entity definitions. External content entities defined outside of the

document are not displayed in the form.

MergeComments

Used to merge into the current document the comments of other documents.

Parameter Required Definition

the TableStyle that should be

used for the new table. See

TableStyle for more

information.

template no String. Specifies the name of

the table template that should

be used for the new table. See

“Templates” for more

information.

Parameter Required Definition

direction yes String. Specifies where the new

column should be inserted

relative to the current

selection. Valid values are:

right and left.

Parameter Required Definition

direction yes String. Specifies where the new

row should be inserted relative

to the current selection. Valid

values are: above and below.

APPLICATION CONFIGURATION: INTERNAL CLASSES

74 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Selecting Files

To allow the user to select those documents, do not use the <Token> element and

MergeComments will display the MergeComments dialog.

Figure 5‑5: Merge Comments dialog

To provide the list of other documents programmatically, use the optional <Token>

element.

<InternalClass name="MergeComments">
 <Token>filepath=...</Token>
 <Token>filepath=...</Token>
 ...
</InternalClass>

Each of the filepath tokens must point to a valid file.

Automatically Merging All Comments

Use the optional <AutoMerge> element to automatically merge all comments rather

than allowing the user to choose on a comment-by-comment basis which

comments should be merged. Only used in conjunction with <Token>.

<InternalClass name="MergeComments">
 <Token>filepath=...</Token>
 <Token>filepath=...</Token>
 <AutoMerge/>
 ...
</InternalClass>

MergeTableCells

Merges the selected table cells. Does not use parameters.

PageLayout

Invokes the interface for setting page orientation. Does not use parameters.

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 75

Paste

Paste the clipboard contents into the document at the current location. Does not

use parameters

DefaultPasteOptionAsText

Allows you to specify whether to or not to automatically paste copied content as

Unicode text without formatting when using the CTRL-V short cut.

<DefaultPasteOptionAsText>true</DefaultPasteOptionAsText>

NOTE: If this parameter is not defined, the default value is false. When the value is

false, the text that is pasted is based on the current cursor position as well as the

data available on the clipboard. It could be pasted as unicode text, formatted text or

an <element>.

PreviewRendition

Creates a document rendition according to the values specified by its parameters

and displays the rendition in the specified application. PreviewRendition uses the

same set of parameters as CreateRendition with the addition of the appPath

parameter.

Table 5‑27: PreviewRendition Parameters

Parameter Required Definition

appPath no String. Location of the launch

application.

destination no String. Specifies the path to

which the exported file and

embedded media should be

saved. The path may be

absolute or relative to the

application folder. It may also

include a default file name.

Supports two patterns: {cd}

(Current location of active

document) and

{ApplicationData}

(Environment variable-

APPDATA). The destination

can either be one of these

patterns or it can start with

them.

expandRef no Boolean. Indicates whether or

not the reference elements

should be expanded into the

components they reference

before processing the XSLT. Set

APPLICATION CONFIGURATION: INTERNAL CLASSES

76 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Parameter Required Definition

to true, to expand all

references. Defaults to false.

filter no String. When specified, if

destination is omitted, OR if

{cd} is specified and one

doesn’t exist (document hasn’t

been saved), user is prompted

with a Save As dialog. Within

this dialog, the ‘Save as type’

filter is specified by this

attribute. See below for more

information.

params no String. Used to supply

parameter values to the

stylesheet. Parameters are

specifies as name=value pairs

separated by the pipe character

(|). For example:

“name=value | name2=value2 |

...”

supportPath no String. When a document is

rendered/previewed, all files

under the folder specified will

be copied to the final

destination of the rendered

document. This process will

overwrite any files of the same

name and skip over files that it

cannot copy. Specified as either

a full path to an existing

directory or a relative path to

an existing directory under the

Quark XML Author application

folder.

xpath no String. Apply the transform to

a fragment of the current

active document pointed to by

the supplied xpath instead of

the entire document. The

xpath must be relative to the

ExportedRoot.

xslt no String. Specifies the path and

name of the transform

stylesheet. The path may be a

URL, an absolute path, or a

path relative to the application

folder.

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 77

filter

The Save As dialog is displayed only if the destination parameter has no value. The

optional filter attribute, if populated, determines what filters will be present in the

Save as Type drop-down box in the Save As dialog. The value of the filter attribute

is a resource ID in the Resources file. See “Error! Reference source not found.”.

The resource ID identifies a string list of filter types. Each filter type comprises two

parts: the filter text and the filter definition, which are separated by the pipe

character (|). For example, to specify a filter to save as a Word document, you would

use the pair shown below as the value of the “SaveWordDocs” resource ID:

SaveWordDocs = Word Document (*.doc)|*.doc

This would produce the filter shown in “Figure 5‑6”.

Figure 5‑6: Save As Filter

Each filter set is likewise separated by a pipe character. For example, if we wanted to

add Quark XML Author Document (*.xml)|*.xml to the example already given

above, it would look like the example below.

SaveWordDocs = Word Document (*.doc)|*.doc|Quark XML Author

Document (*.xml)|*.xml

It is always wise to include a filter that shows All Files (*.*). Adding this filter to the

example above produces the example below.

SaveWordDocs = Word Document (*.doc)|*.doc|Quark XML Author

Document (*.xml)|*.xml|All Files (*.*)|*.*

Of course, the actual resource ID is arbitrary and can have any name you want. The

filter is specified in this way to aid in localization.

If neither destination nor filter are specified, the rendition is saved to the Quark

XML Author temp directory with a Quark XML Author-generated filename, e.g.

MyDoc.doc.

APPLICATION CONFIGURATION: INTERNAL CLASSES

78 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

StyleSheet Child Nodes

PreviewRendition may have any number of StyleSheet child nodes. This provides

the ability to perform chained transformations with the output of one stylesheet

provided to the next. Any XSLT parameters that need to be supplied to the

individual stylesheet can be specified by the params attribute as shown in the

example shown below.

<Stylesheet xslt="stylesheet name"

params="name1=value1|name2=value2"/>

Using PreviewRendition to Load External Objects

PreviewRendition supports configurable stylesheet extensions that allow the

execution of .NET code from within the transform itself. When PreviewRendition is

invoked, Quark XML Author inspects the top of the XSLT for <?XpressExtension?>

processing instructions. For each instruction that is found (multiple instructions are

allowed), the .NET object is loaded and made available to the transform. Additional

parameters required by the .NET object can be supported using the “params”

attribute.

Table 5‑28: PreviewRendition Parameters

The format of the XSLT processing instruction is shown below:

<?XpressExtension namespace="ns" assembly="Assembly"

object="Invision.objectname" ?>

Redo

Invokes Quark XML Author’s Redo function. Does not use parameters.

Similar to Word, the Redo stack is cleared each time an action is pushed onto the

Undo stack.

RejectRevision

Rejects the currently selected document revision or, if the rejectAll parameter is

present and set to true, rejects all document revisions. If neither parameter is

present, any revision(s) in the current selection will be rejected.

Parameter Required Definition

params no String. Used to supply

parameter values to the

stylesheet. Parameters are

specifies as name=value pairs

separated by the pipe character

(|). For example:

“name=value | name2=value2 |

...”

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 79

Table 5‑29: RejectRevision Parameters

SaveToRepository

Saves the current document to the specified repository.

Table 5‑30: SaveToRepository Parameters

Tokens

Token child elements can be used to specify additional parameter information. See

section 6.2.1.2 for more information on using tokens.

Delegates

Indicates that the Argument will have one or more Delegate child nodes that will

make a call to an external DLL for information. The syntax is shown in the example

below.

Parameter Required Definition

keyCode no Integer. Specifies the keyCode

for a specific document node.

If keyCode is a valid node,

RejectRevision will reject

revision(s) for the node

specified.

rejectAll no Boolean. Set to true to reject

all revisions in the document.

Set to false to reject all

revisions in the current

selection. Defaults to false.

Parameter Required Definition

assembly yes String. Specifies the file name

of the .NET class library of the

external process, without the

.dll extension. For example,

About.dll would be identified

simply as About. A relative

path to the assembly may be

supplied.

class yes String. Specifies the fully

namespace-qualified class

name within the .dll file being

called by the Save function. For

example,

Invision.Xpress.Extensible.Mul

tiSelectPopup.

APPLICATION CONFIGURATION: INTERNAL CLASSES

80 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

<Delegate>InvokeInternalClass</Delegate>

Delegates refer to methods in the external DLL that may be called to perform

functions within the application. Some are named similarly to methods in other

assemblies, and may be called by them. See section 6.4, for a list of available

delegates and information on how to use them.

SetAccessMode

Allows user to change the accessMode property of a document dynamically.

Table 5‑31: SetAccessMode Parameters

Table 5‑32: accessMode Values

User Experience

The user experience for working with comments is currently not documented in an

out-of-the-box user guide so we are describing the experience here for archival

purposes.

Parameter Required Definition

accessMode yes String. The required

accessMode parameter specifies

the access mode to which the

author can change the

document. The parameter may

be set to one of the values

listed in Table 5‑32.

Value Definition

Author User can perform all editing and authoring

functions.

Comment User cannot edit document content. User can

view, add, modify and delete all comments

including comments created by other authors.

RestrictedComment User cannot edit document content. User can

view their own comments in Balloons or use

the Reviewing Pane to add, modify and delete

comments, and see other’s comments.

Review Read-only access. User can view the document,

but cannot change any content or any

comments.

Revise Does not affect the editing experience, but is

used to indicate when menu options are

available.

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 81

Editing Comments

Comments may only be edited in Word’s Reviewing Pane.

Viewing Comments

In Word’s comment balloons, only the comments of the current author are

displayed.

In Word’s Reviewing Pane, the comments of all authors are displayed.

Access Modes and SharePoint

For details on modeling access modes in SharePoint see the

“QXA_Technical_Reference_Manual_Adapter_for_SharePoint_EI_4.0” manual.

SetColumns

Launches the Quark XML Author Columns dialog. Does not use parameters. See the

user guide for details on the user experience.

SpellChecker

Launches the Quark XML Author spelling checker. Does not use parameters.

ShowAttributesHandler

Displays the Attributes Panel dialog.

Table 5‑33: ShowAttributesHandler Parameters

Parameter Required Definition

xpath no String. An xpath value that

describes the element that will

be affected. The xpath is from

the XomRoot.

If an xpath for a specific

element is provided, the visible

attributes for that element are

displayed in the Attributes

Panel dialog.

If an xpath is not provided, the

XomCurrentNode is used as

the starting point in a search

for an element that has visible

attributes. If the current

element does not have visible

attributes, the nearest ancestor

element is located and

APPLICATION CONFIGURATION: INTERNAL CLASSES

82 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

SplitTableCells

Splits the currently selected table cell. Does not use parameters.

StyleHandler

Invokes the Quark XML Author style handler. Does not use parameters.

TableAutoFitBehavior

Sets the column width behavior for the selected table.

Table 5‑34: TableAutoFitBehavior Parameters

Parameter Required Definition

evaluated. If not found, this

process continues recursively

up the document tree. In

regards to the user selection,

the container of that selection

should be evaluated. For

example, if text selection is

within an emphasis, then the

containing emphasis is the

starting point.

Parameter Required Definition

value yes Specifies whether columns

have fixed width or a width

proportional to the number of

columns in the table. Valid

values are Fixed and

Proportional. If set to Fixed,

invoking TableAutoFitBehavior

will set the table to fixed-width

columns. The table width will

change as columns are inserted

into or deleted from the table

but the column widths will

not. The table may extend past

the edge of the Word canvas as

a result.

If set to Proportional,

invoking TableAutoFitBehavior

will set the table to

proportional-width columns.

The table width will not

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 83

TableBorders

Invokes the toolbar drop-down table borders tool, which allows the user to apply

borders to table cells.

Table 5‑35: TableBorders Parameters

TableCellAlignment

Invokes the Table Cell Alignment handler.

In Word, the handler uses the following parameter:

Table 5‑36: TableCellAlignment Parameters

For example,

Parameter Required Definition

change as columns are inserted

into or deleted from the table.

Columns will be resized as

columns are added to or

removed from the table so that

their widths are proportional

to the table size. That is, if a

table has four columns and a

fifth is added, each column

will be 1/5 the width of the

table. If a table has four

columns and one is removed,

the remaining columns will be

resized to 1/3 the width of the

table.

Parameter Required Definition

borderType yes String. Specifies the border

type to apply to the currently

selected table cells.

Parameter Required Definition

align yes String. Specifies the alignment

of content within the cell. The

first character species the

vertical alignment: t=top,

m=middle, and b=bottom. The

second character species the

horizontal alignment: j=justify,

r=right, c=center and l=left.

APPLICATION CONFIGURATION: INTERNAL CLASSES

84 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

<toggleButton id="TableCellAlignTopLeftXA" label="Align Top Left"

imageMso="TableCellAlignTopLeft" showLabel="false">

 <InternalClass name="TableCellAlignment"

align="tl"/>

 </toggleButton>

TableDistributeColumns

Distributes currently selected table columns so that all are equal width. Does not use

parameters.

TableDistributeRows

Distributes currently selected table rows so that all are equal height. Does not use

parameters

TableRefresh

Redraws the selected table. Does not use parameters.

QuarkSubSection

Displays Text Direction dialog. Allows user to change the text direction for the table

cell. Does not use parameters.

ToggleCommentsPane

Toggles the Comments Pane opened and closed. Does not use parameters.

ToggleEmpty

Toggles the Empty style between its standard font height/background color and the

specified values.

Toggles the Empty style between its standard font height/background color and the

specified values.

ToggleEntityView

Toggles the display of content entities in the document between the entity names

and their values. Does not use parameters.

ToggleKeepWithNext

For the selected element, toggles the value of the keep-with-next attribute between

true and false. Does not use parameters.

APPLICATION CONFIGURATION: INTERNAL CLASSES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 85

ToggleTrackChange

For the current document, toggles the Track Changes feature bbetween true and

false. Does not use parameters.

ToggleVisibleElement

Renders an element, emphasis, or set of elements or emphasis, identified by the

xpath parameter, visible or hidden, depending on the value of the state parameter.

Invoking this Internal Class sets the value of the inv:visible attribute for the

specified element(s) to true if state=”Show” or to false if state=”Hide”.

Only elements that are defined as visible in the XAS can be hidden/shown in this

manner.

Children of the table node (table heading rows, table body,

and so forth) cannot be hidden/shown independently of the parent table

Table 5‑38: ToggleVisibleElement Parameters

ToggleWidowOrphanControl

For the selected element, toggles the value of the widow-control attribute between

true and false. Does not use parameters

Undo

Invokes Quark XML Author’s Undo function. Does not use parameters.

Similar to Word, the Redo stack is cleared each time an action is pushed onto the

Undo stack.

Parameter Required Definition

state yes String. Valid values are: Show

or Hide. If set to Show,

existing inv:visible attributes

for the specified element(s) are

removed (because this attribute

defaults to true.) If set to Hide,

the specified element(s) are

assigned the inv:visible

attribute with the value false.

xpath yes String. An xpath value that

describes the element or

elements that will be affected.

APPLICATION CONFIGURATION: INTERNAL CLASSES

86 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

UpdateSchema

Dynamically changes the Quark XML Author Structure (XAS) and re-renders the

document. This change only affects the current document. Instead of parameters,

uses one or more child <ElementDef> nodes similar to the XAS definition element

of the same name. For example, consider an ElementDef for a node that is initially

visible in the document:

<ElementDef name="heading-instruction" friendly="Instruction"
visible="true" style="Heading Instruction">
 <!-- Element structure defined -->
</ElementDef>

To dynamically change the definition’s visible value from true to false, the Internal

Class would be defined as shown below:

<Internal Class="" name="UpdateSchema">
 <ElementDef name="heading-instruction" friendly="Instruction"
visible="false" style="Heading Instruction"/>
 </InternalClass>

Note that the <ElementDef> node is a leaf node only.

The following ElementDef attributes may be changed: visible, style,

excludeFromContextMenu.

WordDialogEdit

Invokes the Word dialog named in the dialogName parameter.

Table 5‑39: WordDialogEdit Parameters

Parameter Required Definition

dialogName yes String. The Word dialog that

should be invoked. For

example,

wdDialogInsertSymbol.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN GUIDE |

Application Configuration:
Extensibility Interface

Quark XML Author was designed to be extensible, so that it can be easily integrated

with custom and third party (external) applications. Quark XML Author

communicates with external applications via the Extensibility Interface (EI)

section of the application and document configuration files. Functions that are

document type specific are specified in the DocConfig file. Functions that may be

invoked for all document types are specified in the application-level configuration

file (AppConfig).

External applications typically are in the form of a Dynamic Link Library (DLL) or

an EXE. A DLL contains a set of functions, each of which has its own parameters. EI

is the mechanism by which these functions are called. EI must be told the details of

“when” and “how” a function is called.

This chapter covers the Extensibility Interface from two major viewpoints:

programming external methods for use with Quark XML Author, and configuring

Quark XML Author to make use of those external methods.

Section 17 of this manual, “Integration with Content

Management Systems”, discusses integrating Quark XML Author with Content

Management Systems, and contains several examples of creating Extensibility

Interface methods. In addition, chapter 18, “Configuring Smart Paste”, contains an

EI method example.

Programming for Quark XML Author

Quark XML Author can be configured to call any external application that exposes

public methods. The person configuring Quark XML Author simply needs to know

the assembly, class, and method name and what parameters the method expects.

For example, the following method requires that an XML node and an array of

Delegates be passed to it:

public bool IsEditableElement(XmlNode node, Delegate[] delegates)
{
 try
 {
 //read all the delegates here.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

88 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 //The namespaces for all delegates are
Quark.XA.ExtensibilityDelegates.
 IsEditableElement isEditableElementDelegate = delegates[0] as
IsEditableElement;
 if(isEditableElementDelegate != null && node != null && node
is XmlElement)
 {
 // This delegate indicates whether a node is editable or
not.
 // This is based on values associated to a proprietary
 // Invision attribute called inv:access where
 // xmlns:inv="urn:xpressauthor:xpressdocument".This
attribute is usually
 // applied in another EI method. A typical example would be
a document coming
 // from a CMS system with certain nodes
 // tagged as non-editable, On an open, this EI method would
read the non-editable
 // tag from this document and add a Quark XML Author
 //tag (inv:access="read-only") identifying it as a readOnly
chunk.
 return isEditableElementDelegate(node);
 }
 }
 catch(Exception e)
 {
 System.Diagnostics.Debug.WriteLine("IsEditableElement
Exception :" + e.Message + "\nStackTrace:" + e.StackTrace);
 }
 return false;
}

As long as the assembly and class to which this method belongs are known, Quark

XML Author can be configured to supply the XML node and any delegates that the

method requires. The method would do its work and return a Boolean value to

Quark XML Author to be acted upon.

Calling Quark XML Author from an External Method with Delegates

In addition to being able to call external methods, Quark XML Author exposes its

own methods that can be called by external methods via delegates. Delegates are

function pointers to Quark XML Author methods that can be passed on to external

DLLs. The External DLLs may then call the methods to perform operations within

the application. Custom methods can accept delegates by implementing the

Delegate[] argument type.

Configuring the Extensibility Interface

Configuring Quark XML Author to use external methods is a matter of telling Quark

XML Author how and when to call them. “How” is covered in Section 6.2.1,

“Building the EI Method”. “When” is covered in Section 6.2.2, “Calling the EI

Method”.

Building the EI Method

The ExtensibilityInterface node of both the AppConfig and DocConfig files contains

the Method definitions that are used to call external applications. (It also can

contain instructions about when to call them, which is covered in Section 6.2.2.1,

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 89

“Calling the EI Method from a Document Event”). The ExtensibilityInterface node

contains a MethodInfo child element. MethodInfo in turn contains one or more

Method nodes. The attributes of Method identify the external application to be

called. The child nodes of Method provide the parameter values to be passed to the

external application, as shown below:

<ExtensibilityInterface>

 <MethodInfo>

 <Method

 <Method id="name for the EI method" assembly=" external
application assembly name" class="external application class
name" method=" external application method name">

 <!-- Any number of <Argument> nodes -->

 </Method>

 </MethodInfo>

</ExtensibilityInterface>

In the following subsections, we will explain the attributes and arguments and build

an example EI method that calls the external method provided as an example in

section 6.1.

Method Node Attributes

The attributes for the Method node define the .NET class library of the external

process and how it is executed. Table 6‑1 defines these attributes, all of which are

mandatory.

Table 6‑1: Method Attributes

Attribute Definition

assembly Specifies the file name of the .NET class library

of the external process, without the .dll

extension. For example, About.dll would be

identified simply as About. A relative path to

the assembly may be supplied if the assembly is

placed in the root or a subdirectory of the

Quark XML Author application folder.

class Specifies the fully namespace-qualified class

name within the .dll file (for example,

Invision.Xpress.Extensible.MultiSelectPopup)

being called for the external process.

id Defines the name by which the method will be

referenced.

method Specifies the method executed when the class is

called.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

90 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

In the example below, we are calling a method named InvokeMethodIdTest. This is

a method of MiscellaneousDelegates.Misc, which isprovided in the sample Visual

Studio .NET project file.

<Method id="IsEditableEI" assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc" method="IsEditableElement">

<!-- Arguments to be added -->

</Method>

We have assigned the id value IsEditableEI to this EI method; whenever we invoke

this method, the id value is used to reference it. The id value can be anything you

want it to be provided that it is unique.

Method Node Arguments

Now that we’ve identified the external method to be called, we have to supply it

with the parameter values it expects. Here is the signature for the method again:

public bool IsEditableElement(XmlNode node, Delegate[] delegates)

IsEditableElement expects to receive an XML node and at least one delegate. We will

supply this data with a collection of Argument elements.

Enumerated Values

At its simplest, Argument is an empty element with one attribute: type. The value of

type is an enumerated value that supplies information about the Quark XML

Author document. For the example we’re working with, we need to supply an XML

node to the external class. Quark XML Author has several enumerated values that

supply XML fragments. The one we need to use here is XomCurrentNode, which

provides the document node corresponding to the user’s current selection. We

would add an Argument element to our method definition that names

XomCurrentNode as the argument type, as shown in the example below:

<Method id="IsEditableEI" assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc" method="IsEditableElement">

 <Argument type="XomCurrentNode"/>

</Method>

A complete list of the Enumerated Value names that Quark XML Author makes

available is provided in section 6.3, “List of Available Enumerated Values”.

Delegates

As mentioned previously, delegates are function pointers to Quark XML Author

methods that can be passed on to external DLLs. The external method sample we

are using expects to be passed a delegate that it can use to determine if the node it

has been passed may be edited. We’ll supply this delegate with another Argument

node.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 91

In this case, the type attribute for the Argument node is set to Delegates, and

Argument contains a collection of one or more Delegate nodes:

<Method id="IsEditableEI" assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc" method="IsEditableElement">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <!-- One or more <Delegate> nodes go here -->

 </Argument>

</Method>

The content of the Delegate node is the name of the delegate to
be supplied. For this example, we will supply the
IsEditableElement delegate, shown below:

<Method id="IsEditableEI" assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc" method="IsEditableElement">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>IsEditableElement</Delegate>

 </Argument>

</Method>

The method is complete.

A complete list of the delegates that Quark XML Author makes available, along with

the signatures that must be used when calling them, is provided in section 6.4, “List

of Available Delegates”.

Tokens

In some cases, neither enumerated values nor delegates will be adequate to supply

the correct information to the external class. In these cases, you set the Argument

type value to Tokens. With type set to Tokens, the Argument node must then

contain one or more Token child nodes. The content of the Token node can be any

data that needs to be supplied to the external application.

For example, consider the following external method, which belongs to the same

assembly and class as the previous example:

public void AssignSingleAttributeTest(XmlNode xomNode, string[]
tokens)

 {

 if(xomNode is XmlElement && tokens != null && tokens.Length
> 0 && xomNode.Attributes.Count > 0)

 {

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

92 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 XmlAttribute attr = xomNode.Attributes[tokens[0]];

 if(attr != null)

 {

 //Simply display the attribute value in the
Console. This could be more complex like displaying

 //a custom form for choosing/changing an attribute
value.

 Console.WriteLine("Attribute Name:" + attr.Name + "
Value:" + attr.Value);

 }

 }

 }

This method requires an XML node and tokens to be supplied to it. The EI method

would be constructed similarly to the one we constructed previously, but the second

Argument node type would be set to Tokens:

<Method id="AssignSingleAttributeEI"
assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc"
method="AssignSingleAttributeTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Tokens">

 <!-- Token elements go here -->

 </Argument>

</Method>

In this case, the external method is being used to get an attribute value from a

custom Quark XML Author control, so we need to assign the attribute name as the

content of a Token node:

<Method id="AssignSingleAttributeEI"
assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc"
method="AssignSingleAttributeTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Tokens">

 <Token>inv:attr1</Token>

 </Argument>

</Method>

The content of Token can be any string value or an xml fragment required by the

external application.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 93

Tag

Tag is a special Argument type that supplies the label of an item selected in the user

interface. It is typically used with EI methods that intercept an attempt to insert an

element by the user. For example, if the following method was invoked when the

user clicked an element with the label Section, the string Section would be passed

to the external method:

<Method id="getImage" assembly="ImageHandler" class="
ImageHandler.InsertElementManager" method="GetImage">

 <Argument type="Tag"/>

</Method>

Tag is used in the case study presented in Chapter 21.

Calling the EI Method

Once you have defined a method in the Extensibility Interface, it still won’t do

anything unless it is invoked. EI methods may be invoked through a document

event, through a Quark XML Author command (menu item, commandbar button,

or shortcut key) defined in the application or document configuration files, or by an

element, emphasis, or attribute definition in the Quark XML Author Structure

Calling the EI Method from a Document Event

Previously, we have discussed the MethodInfo node of the ExtensibilityInterface

element in the configuration files. However, ExtensibilityInterface can also contain

any number of nodes named for document events. These nodes allow you to specify

EI methods to be called when document events are triggered.

To invoke an EI method from a document event, include an ExtensibilityMethod

element as a child of the document event element. The ExtensibilityMethod

element has one required attribute: id. The value of the id attribute is the name of

an EI Method defined in the MethodInfo node.

For example, suppose we had defined a method that looks for document variables

called header and footer in the Word document and sets them to a specified value:

<Method id="AssignDocVariableEI" assembly="UIManipulation"
class="UIManipulation.UIDelegates"
method="AssignDocVariableTest">

 <Argument type="Tokens">

 <!-- the header and footer are doc variables defined in the
dot file of the document. -->

 <-- In this simple example, the docVariables are set to a
hardcoded value. -->

 <Token>header=This is the Header</Token>

 <Token>footer=This is the footer</Token>

 </Argument>

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

94 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 <Argument type="Delegates">

 <Delegate>AssignDocVariable</Delegate>

 <Delegate>RefreshDocVariables</Delegate>

 </Argument>

</Method>

Now suppose that we wanted to call this method whenever the document was

saved. We would add the following node as a child of the ExtensibilityInterface

element:

<Save>

 <ExtensibilityMethod id="AssignDocVariableEI"/>

</Save>

When the document is saved, the AssignDocVariableEI method would be invoked

before the Save completes. A document event can contain an unlimited number of

ExtensibilityMethod child elements, each of which would call a different EI

method.

A complete list of available document events is provided in section 6.5,”List of

available Document events”.

Calling the EI Method from a Quark XML Author User Command

Menu items, commandbar buttons, and shortcut keys can all be configured to

invoke EI methods. Section 4 of this manual discusses the use of the

ExtensibilityMethod child element for each type of user interface component, but

for ease of reference, those instructions are summarized here.

To invoke an EI method from a menu item, commandbar button, or a shortcut key

combination, include an ExtensibilityMethod element as a child of the appropriate

element in the configuration file. The ExtensibilityMethod element has one

required attribute: id. The value of the id attribute is the name of an EI Method

defined in the MethodInfo node. In each example below, an EI Method name

SampleTableImport is invoked:

From a menu item:

<MenuItem resourceId="Table Import">

 <ExtensibilityMethod id="SampleTableImport"/>

</MenuItem>

From a commandbar button:

<CommandBarButton resourceId="Table Import">

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 95

 <ExtensibilityMethod id="SampleTableImport"/>

</CommandBarButton>

From a shortcut key:

<ShortcutKey Key="T" Shift="true" Ctrl="true">

 <ExtensibilityMethod id="SampleTableImport"/>

</ShortcutKey>

For more information on configuring menu items, commandbar buttons, and

shortcut keys, see Chapter 4 of this manual.

Multiple EI Methods from a Single Command

You may call multiple EI methods from a single command by adding a separate

ExtensibilityMethod node for each method you wish to call. Keep in mind,

however, that if an EI method returns a value of false or throws an exception, any

subsequent EI method calls will be cancelled.

Calling the EI Method from an Element or Emphasis Definition

With some elements or emphasis styles (which are simply in-line elements), you

may want to provide a way for users to access a tool such as a metadata wizard via a

command in the context menu. Element and Emphasis definitions may use

Extensibility methods to provide this functionality.

To use EI methods with either an element definition or emphasis definition, add an

ExtensibilityMethods child element to the definition. This node will contain one or

more ExtensibilityMethod elements, one for each EI method to be called.

The syntax for using Extensibility Methods in these contexts is shown below:

<ExtensibilityMethods>

 <ExtensibilityMethod id="method name" friendly="friendly name"
showInComponentContextMenu="true or false"
showInContextMenu="true or false" faceID="#"/>

</ExtensibilityMethods>

Note that for element and emphasis definition, the ExtensibilityMethod element

has more attributes available to it. They are defined in Table 6‑2.

Table 6‑2: ExtensibilityMethod Attributes

Attribute Name Required Definition

toggleXPath no Toggle the state of the ‘toggle

button’ based on the xpath

mentioned in the attribute.

enableXpath no Value is an XPath expression

which evalutes to a node-set in

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

96 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Attribute Name Required Definition

which false is returned for an

empty node-set and true

otherwise. Used to toggle

availability of menu items,

commandbar buttons, and

shortcut keys. If the value

evaluates to false, the item is

disabled, or enabled if the

value evaluates to true.

Namespaces are not supported

in the xpath syntax.

For the Ribbon, enableXpath

evaluates against root notes.

Against current node is not

supported.

faceID no Allows you to specify an icon

that will be displayed next to

the context menu item. The

value of faceId is an integer

corresponding to the ID

number of an icon in the Word

template FaceID.dot.

friendly no Specifies a name for the

context menu command.

id yes Specifies the ID of the EI

method to be called.

showInComponentContextMe

nu

no Defaults to true. When set to

false, the command will not

appear in the Component

context menu.

showInContextMenu no Defaults to true. When set to

false, the command will not

appear in the main context

menu, but may still appear in

the Component context menu

if

showInComponentContextMe

nu is set to true.

showXPath no Value is an XPath expression

which evaluates to a node-set,

and when applied to the

current element, indicates

whether to include the method

on the context menu: if a

node-set is returned, the

method is included; if an

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 97

See section 13 for information on how to define Emphasis and section 14 for

information about how to define Elements.

Calling the EI Method from an Attribute Definition

With some document element attributes, you may want to provide a way for users

to access a tool such as a metadata wizard. Attribute definitions may invoke an EI

method to provide this functionality. Simply add the externalMethodId attribute to

the AttributeDef element in the XAS file. The value of the attribute is the id of the

EI method. An example is shown below:

<AttributeDef namespace="www.invisionresearch.com" prefix="inv"
name="attr1" externalMethodId="AssignSingleAttributeEI"
visible="true"/>

Calling the EI Method from an Element Definition

The ElementDef element has an externalMethodId attribute which can define an EI

for inserting new elements. For such definitions, the insertable context menu

Attribute Name Required Definition

empty node-set is returned, the

method is omitted. The XPath

expression is applied to the

XOM therefore the names are

XOM element names. The

XPath expression will be

evaluated against the current

runtime element and thus

must be relative to it.

Namespaces are not supported

in the xpath syntax. For

example,

showXPath=”self::node()[local-

name()=’Section’]”.

XML Author does not support

dynamic show/hide of Ribbon

items, therefore showXPath is

not applicable for Ribbon

items.

prependElementFriendly No Boolean. Defaults to true.

When set to false, the element

friendly name will not be

appended before the

extensibility method name.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

98 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

displays a special icon to indicate that this is an EI insert. See “Table 14‑1” for

information on this attribute

Using One EI Method to Call Another

You can also call EI methods from the external application. In the example below,

the InvokeAnotherEI method passes the name of another EI method

(JustAnotherEI) to the external method it calls:

<Method id="InvokeAnotherEI" assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc" method="InvokeMethodIdTest">

 <Argument type="Tokens">

 <Token>JustAnotherEI</Token>

 </Argument>

 <Argument type="Delegates">

 <Delegate>InvokeMethodId</Delegate>

 </Argument>

</Method>

Here’s the second EI method:

<Method id="JustAnotherEI" assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc" method="InvokeeTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>SelectNode</Delegate>

 </Argument>

</Method>

The first EI method invokes this external method:

 public void InvokeMethodIdTest(string[] tokens, Delegate[]
delegates)

 {

 InvokeMethodId invokeMethodIdDelegate = delegates[0] as
InvokeMethodId;

 if(invokeMethodIdDelegate != null && tokens.Length > 0 &&
tokens[0] != String.Empty)

 {

 //This delegate simply calls another EI method defined in
the config files.

 //The name for the method comes from a token. In this case
we are invoking the InvokeeTest EI method.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 99

 invokeMethodIdDelegate(tokens[0]);

 }

 }

This method receives the token value JustAnotherEI and the InvokeMethodId

delegate. It then uses InvokeMethodId to call the EI method named in the token,

which is the second EI Method. That EI method invokes an entirely different

external method:

 public void InvokeeTest(XmlNode currentNode, Delegate[]
delegates)

 {

 SelectNode selectNodeDelegate = delegates[0] as SelectNode;

 if(selectNodeDelegate != null && currentNode != null)

 {

 selectNodeDelegate(currentNode);

 }

 }

And this method selects the node passed to it by the XomCurrentNode enumerated

value.

You can daisy-chain any number of EI methods and external methods in this

manner should you need to.

Use Cases

For additional use cases and examples see “Extensibility Interface Use Case Study”.

List of Available Enumerated Values

The enumerated values defined in Table 6‑3 may be used as Extensibility Interface

argument types. Several enumerated values refer to the XOM, which is explained

following the table.

Table 6‑3: Enumerated Values

Enumerated Value Type Definition

AccessMode string The access mode for the

current document. AccessMode

is available in an (embedded)

OLE Word Document. When

an OLE Word Document is the

active document, this is the

access mode of the parent XML

Author document that owns

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

100 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Enumerated Value Type Definition

the OLE Word Document.

DeleteNodes 2-d array of DeleteNode-

ParentNode pairs:

XmlNode[element,parent]

Special argument type that is

only valid for an EI method

specified under the

BeforeComponentDelete and

ComponentDelete events. It

holds a list of elements that

either will be deleted (when

used with

BeforeComponentDelete) or

have been deleted (when used

with ComponentDelete) and

their parent nodes. For

example, suppose you were to

delete <Title/> and <Para/>

from:

<Section>

 <Title/>

 <Para/>

</Section>

DeleteNodes would supply an

array containing the following:

Title-Section •

Para-Section •

Note that when DeleteNodes is

used as an argument for an EI

method under

BeforeComponentDelete, the

first element in each pair is still

part of the XOM.

When DeleteNodes is used

with ComponentDelete, the

first element in each pair is no

longer part of the XOM.

DocNumber Int The repository document

number for a checked out

document. A new document

will have a DocNumber of 0.

Used by Xpress Server[1].

DocumentType string This argument may be assigned

a value by the Xpress Server

based on taxonomy (document

classification) or catalog

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 101

Enumerated Value Type Definition

information. For example, this

would allow a process to

differentiate between

‘Document’ and ‘Template’

document types.

ExportedCurrentNode XML Node With this argument type, only

the currently selected element

is serialized. In other words, a

new XmlNode is created that

will contain element content,

but will not have references to

parent or child nodes.

ExportedCurrentNodeTree XML Node This argument has the same

characteristics as

ExportedCurrentNode, but also

includes all descendent

elements.

ExportedRoot XML Node Indicates a schema-valid XML

document. This document

contains element content and

is fully de-referenced including

CALS-standard tables. Because

this argument type requires

normalizing the Quark XML

Author and Word object

models, it may require

processing time for larger

documents.

Filename string Provides an EI method with

the currently active

document’s full name,

including paths.

PasteNode XML Node Special argument type used

exclusively by any BeforePaste

and InsertComponent EI

methods. Contains the node

being pasted (for any EI

methods in BeforePaste event)

or the node after it has been

pasted (for any EI methods

inside InsertComponent

event).

Revision int The repository revision

number for a checked out

document. When a document

is checked in, it will be

assigned a Revision 1 greater

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

102 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Enumerated Value Type Definition

than this value. A new

document will have a Revision

of 0. Used by Xpress Server.

StyleList ArrayList of strings Special argument type used

exclusively by the

BuildStyleList EI methods.

Contains a list of currently

insertable elements. Used to

facilitate business rules that

cannot be supported by

configuration. For example, a

business rule states that only

one instance of a certain

content element can exist in a

given document.

ToggleState boolean Special argument type used

exclusively for external

method wired to a toggle

menu item. Indicates the

current state of the toggle

button.

Pressed=true

Depressed=false)

UserName string The username of the individual

authoring or revising the

document as specified in the

document header. As is the

case with all Quark XML

Author header information, it

is populated by the Xpress

Server (servlet).

WordUserName string The UserName property of the

Word application.

XomCurrentNode XML Node The XOM node corresponding

to the user’s current selection.

If the current selection is on an

empty style or it spans

multiple paragraphs,

XomCurrentNode will be null.

See section 6.3.1, “XOM

Defined” for a definition of

XOM.

XOMCurrentNode is available

in an (embedded) OLE Word

Document. When an OLE

Word Document is the active

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 103

Enumerated Value Type Definition

document, the XOM node

corresponds to a node within

the Psuedo XOM of the OLE

Word Document.

XomRoot XML Node The XOM node corresponding

to the current document root.

See section 6.3.1, “XOM

Defined” for a definition of

XOM. XOMRoot is available in

an (embedded) OLE Word

Document. When an OLE

Word Document is the active

document, the XOM node

corresponds to the root of the

parent XML Author document

that owns the OLE Word

Document.

XomSelectedNodes XML Node The XOM nodes corresponding

to the user’s current selection

when the selection spans

multiple elements. Note that

only nodes with a defined

relationship to the external

method are included. To define

a relationship with the

external method, the method

must be referenced in the

ElementDef’s

ExtensibilityMethods section.

See Section 14.10 for more

information about the

ExtensiblityMethods section of

ElementDef. See section 6.3.1,

“XOM Defined” for a

definition of XOM.

XomPreviousNode XML Node The XOM node corresponding

to the previous visible node if

selection is on an empty.

Otherwise null. See section

6.3.1, “XOM Defined” for a

definition of XOM.

StyleListParents Arraylist of XML Node A special argument type to be

used exclusively by the

BuildStyleList EI methods. This

contains a list of parents of

currently insertable elements

provided by the styleList

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

104 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

XOM Defined

XOM means Quark XML Author Object Model. It is the Quark XML Author XML

DOM that is used to manage the structure of a document and its attributes. The

XOM includes reference nodes and their de-referenced descendants. XOM contains

only the document structure. It does not contain any element content. All element

content is managed in the Microsoft Word Object Model. A custom process

provided with an <Argument type=”XomRoot”/> may traverse the current

document’s structure, as well as browse and/or manipulate attribute values.

XOM and OLE Word Documents

XOMCurrentNode is available in an (embedded) OLE Word Document. XOMRoot is

available in an (embedded) OLE Word Document.

See “Table 6‑3: Enumerated Values”.

List of Available Delegates

The available delegates and their signatures are defined below.

AssignDocVariable

public delegate void AssignDocVariable(string docVariableName, string

docVarValue)

For the given document variable, supplies the string variable specified.

Configuration Example

<!-- This method looks for doc variables called "header" and
"footer" in the Word document and sets them to a specific value--
>

<Method id="AssignDocVariableEI" assembly="UIManipulation"
class="UIManipulation.UIDelegates"
method="AssignDocVariableTest">

 <Argument type="Tokens">

 <!-- the header and footer are doc variables defined in the
dot file of the document. -->

 <!-- In this simple example, the docVariables are set to a

Enumerated Value Type Definition

argument with a one–on–one

linkage with stylelist items.

This argument can help the EI

developer to distinguish

between insertables under

different parents with the same

name.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 105

hardcoded value. -->

 <Token>header=This is the Header</Token>

 <Token>footer=This is the footer</Token>

 </Argument>

 <Argument type="Delegates">

 <Delegate>AssignDocVariable</Delegate>

 <Delegate>RefreshDocVariables</Delegate>

 </Argument>

</Method>

AssignPostText

public delegate void AssignPostText(XmlNode visibleNode, string

postTextString)

Assigns PostText portionmark values for a given visible node.

Configuration Example

<!-- PreText delegates test method definition -->

<!-- This method assigns a randomly generated string to the
PreText area of a visible node-->

<Method id="PreTextEI" assembly="UIManipulation"
class="UIManipulation.UIDelegates" method="PreTextPostTextTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>GetNodeProperties</Delegate>

 <Delegate>GetPreText</Delegate>

 <Delegate>AssignPreText</Delegate>

 <Delegate>GetPostText</Delegate>

 <Delegate>AssignPostText</Delegate>

 <Delegate>RefreshDocVariable</Delegate>

 </Argument>

</Method>

AssignPreText

public delegate void AssignPreText(XmlNode visibleNode, string

preTextString)

Assigns PreText portionmark values for a given visible node.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

106 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Configuration Example

<!-- PreText delegates test method definition -->

<!-- This method assigns a randomly generated string to the
PreText area of a visible node-->

<Method id="PreTextEI" assembly="UIManipulation"
class="UIManipulation.UIDelegates" method="PreTextPostTextTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>GetNodeProperties</Delegate>

 <Delegate>GetPreText</Delegate>

 <Delegate>AssignPreText</Delegate>

 <Delegate>GetPostText</Delegate>

 <Delegate>AssignPostText</Delegate>

 <Delegate>RefreshDocVariable</Delegate>

 </Argument>

</Method>

AssignTextNode

public delegate void AssignTextNode(XmlNode visibleParaNode,

string fragment, TriValue enableTrackChanges)

Replaces the content of the visibleParaNode with the contents of the fragment.

Only the text portion of the node (and any emphasis applied to that text) is

replaced. Any other child elements of the visibleParaNode are left intact. The value

of enableTrackChanges indicates whether to record TrackChanges for the change.

The possible values are Quark.XA.ExtensibilityDelegates.TriValue.False (do not

record TrackChanges), Quark.XA.ExtensibilityDelegates.TriValue.True (record

TrackChanges), and Quark.XA.ExtensibilityDelegates.TriValue.NoValue (the current

value of TrackChanges for the document is used).

Configuration Example

<!-- AssignTextNode delegate test method definition -->

<!-- This method replaces the text in the XomCurrentNode with
text from the location specified in the token-->

<Method id="AssignTextEI" assembly="XomManipulation"
class="XomManipulation.XomDelegates" method="AssignTextNodeTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Tokens">

 <!-- location of the text chunk which is being inserted -->

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 107

 <Token>c:\temp\AssignTextNodeTest.txt</Token>

 </Argument>

 <Argument type="Delegates">

 <Delegate>AssignTextNode</Delegate>

 </Argument>

</Method>

Configuration Example

<Method id="UndoRecordingTest" assembly="UndoRecording"
class="ExtensibilityInterface.Delegates.UndoRecording"
method="UndoRecordingTest">

 <Argument type="XomCurrentNode" />

 <Argument type="Delegates">

 <Delegate>AssignTextNode</Delegate>

 <Delegate>BeginUndoRecording</Delegate>

 <Delegate>EndUndoRecording</Delegate>

 </Argument>

</Method>

BeginUndoRecording

public delegate void BeginUndoRecording()

Begins recording undo objects.

Configuration Example

<Method id="UndoRecordingTest" assembly="UndoRecording"
class="ExtensibilityInterface.Delegates.UndoRecording"
method="UndoRecordingTest">

 <Argument type="XomCurrentNode" />

 <Argument type="Delegates">

 <Delegate>AssignTextNode</Delegate>

 <Delegate>BeginUndoRecording</Delegate>

 <Delegate>EndUndoRecording</Delegate>

 </Argument>

</Method>

CreateContextMenu

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

108 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

public delegate void CreateContextMenu(XmlNode node,

ContextMenuItem[] items);

Supplies the list of items to be placed in a context menu. Used typically for custom

context menus in post-text and pre-text portionmark areas.

Configuration Example

<!-- EI Method tests CreateContextMenu - the EI will use the
current xom node and build the context menu. For this to work -
assign a shortcut key to the ribbon button-->

<Method id="CreateContextMenuTest" assembly="CreateContextMenu"
class="ExtensibilityInterface.Delegates.CreateContextMenuTest"
method="TestCreateContextMenu">

 <Argument type="XomCurrentNode"/>

 <Argument type="Tokens">

 <Token>Corporate Governance</Token>

 <Token>Environment, Safety & Health</Token>

 <Token>Facilities</Token>

 <Token>Finance</Token>

 <Token>Human Resources</Token>

 <Token>Information Management</Token>

 <Token>Integrated Safeguards & Security</Token>

 <Token>Mission Execution</Token>

 <Token>Supply Chain Management</Token>

 </Argument>

 <Argument type="Delegates">

 <Delegate>CreateContextMenu</Delegate>

 </Argument>

</Method>

DeleteNode

public delegate void DeleteNode(XmlNode nodeToBeDeleted, bool

displayWarning = false);

Delete the node specified. This operation will also delete any schema-dependent

nodes. For instance, if the node to be deleted is a required child of a parent as

defined in the schema, the parent and all its other siblings will be deleted. Thus, the

operation will fail if the final delete root happens to be the root of the document.

DeleteNode Parameters

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 109

Configuration Example

<!-- DeleteNode delegate test method definition -->

<!-- This method tries to delete the incoming node -->

<Method id="DeleteEI" assembly="XomManipulation"
class="XomManipulation.XomDelegates" method="DeleteNodeTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>DeleteNode</Delegate>

 </Argument>

</Method>

EmphasisAction

public delegate void EmphasisAction(XmlNode node, string

emphasisName, string subStyleKey, string subStyleValue)

Used to apply emphasis.

For more information, see InternalClass”EmphasisAction”.

The delegate is available for use in XML Author documents and embedded Word

documents.

Configuration Example

<Method id="TestEmphasisAction" assembly="XOMCurrentTest"
class="XOMCurrentTest.XOMTest" method="TestEmphasisAction">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>EmphasisAction</Delegate>

 </Argument>

 <Argument type="Tokens">

 <Token>emphasisName=example</Token>

 <!-- provide the name of an EmphasisDef that exists as child
to the OLEWordDocument/ParaType/Emphasis -->

 </Argument>

Parameter Required Definition

nodeToBeDeleted yes XmlNode. The XOM Node to

be Deleted.

displayWarning no Boolean. Displays a warning

before the node is deleted.

Defaults to false.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

110 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

</Method>

EndUndoRecording

public delegate void EndUndoRecording()

Ends registering undo objects and also registers a compound Undo for all operations

that took place so that they can be undone with one Undo call.

Configuration Example

<Method id="UndoRecordingTest" assembly="UndoRecording"
class="ExtensibilityInterface.Delegates.UndoRecording"
method="UndoRecordingTest">

 <Argument type="XomCurrentNode" />

 <Argument type="Delegates">

 <Delegate>AssignTextNode</Delegate>

 <Delegate>BeginUndoRecording</Delegate>

 <Delegate>EndUndoRecording</Delegate>

 </Argument>

</Method>

FormattingAction

public delegate bool FormattingAction(string formattingName,

string colorValue)

Used to apply/remove character formatting, font color and highlight color on

current selection.

For more information, see InternalClass”FormattingAction”.

The delegate is available for use in XML Author documents.

GetExportedNode

public delegate XmlNode GetExportedNode(XmlNode xomNode)

Returns the exported node for the specified XOM node.

Configuration Example

<!-- EI Method tests GetExportedNode, and
GetExtensibldUserInterface - should display xml of current xom
node in Word taskpane -->

<Method id="GetExtensibleUserInterfaceTest"
assembly="ExtensibleUserInterface"
class="ExtensibilityInterface.Delegates.ExtensibleUserInterface"
method="GetExtensibleUserInterfaceTest">

 <Argument type="XomCurrentNode" />

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 111

 <Argument type="Delegates">

 <Delegate>GetExportedNode</Delegate>

 <Delegate>GetExtensibleUserInterface</Delegate>

 </Argument>

</Method>

GetExtensibleUserInterface

public delegate IExtensibleUserInterface

GetExtensibleUserInterface(ExtensibleUserInterfaceType type,

UserControl control, string title, Guid guid = null, DockPosition

dockPosition = DockPosition.dockPositionRight, bool

createIfNotFound = true);

For a given custom UserControl, returns an object implementing the ITaskpane

interface which provides the incoming control with a parent form. Available

parameters provide support to show multiple custom task panes simultaneously, set

default dock position and to get an Extensible User Interface (EUI) object that has

already been created.

GetExtensibleUserInterface Parameters

Parameter Required Definition

type yes ExtensibleUserInterfaceType.

Permissible values are Taskpane

and Dialog.

control yes UserControl. The control to be

added to the task pane.

title yes String. The title of

ExtensibleUserInterfaceType.

guid no GUID. An EI can now specify a

GUID to create a separate task

pane. If no GUID is specified,

the task pane will be created as

a legacy task pane. Defaults to

Null.

DockPosition no String. the default dock

position can be specified when

creating the task pane. Defaults

to

DockPosition.dockPositionRigh

t.

createIfNotFound no Boolean. If true, it will create a

new EUI if not already created.

If false, it will get the already

created EUI. Defaults to true.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

112 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Example :

GetExtensibleUserInterface(ExtensibleUserInterfaceType.Taskpane,

taskPane, "Navigation Pane", guid, DockPosition.dockPositionLeft,

true);

GetNextNode

public delegate XmlNode GetNextNode(XmlNode node)

Returns the next visible node in the document as an XML node. If provided node is

null, returns the first visible node in the document.

Configuration Example

<!-- GetNextNode delegate test method definition -->

<Method id="GetNextNodeEI" assembly="Doc_Navigation_Selection"
class="Doc_Navigation_Selection.Selection_Navigation"
method="GetNextNodeTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>GetNextNode</Delegate>

 <Delegate>SelectNode</Delegate>

 </Argument>

</Method>

GetNodeProperties

public delegate void GetNodeProperties(XmlNode node, Hashtable

ht)

Gets all properties defined for an attribute, element, or emphasis in the schema.

Currently the following properties are supported: NodeType (NodeType identifies

the type of incoming element-Element, Attribute or Emphasis), namespace, prefix,

xmlname, friendly, style, defaultHyperlink, displayAttribute, displayElement,

insertAfter, increaseIndent, decreaseIndent, excludeFromContextMenu, keyCode

(only for NodeType=Element, contains keyCode - the actual value if it is visible or -1

if it is not),submenu, contextId, Unmanaged, UniqueIdentifier, externalMethodId,

default, numbering, visible, readonly , datatype, format, attrGroupName, required,

fixed, and contextFriendly. The contextFriendly property is the friendly name that

is displayed in the context menu/style list.

Configuration Example

<!-- PreText delegates test method definition -->

<!-- This method assigns a randomly generated string to the
PreText area of a visible node-->

<Method id="PreTextEI" assembly="UIManipulation"
class="UIManipulation.UIDelegates" method="PreTextPostTextTest">

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 113

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>GetNodeProperties</Delegate>

 <Delegate>GetPreText</Delegate>

 <Delegate>AssignPreText</Delegate>

 <Delegate>GetPostText</Delegate>

 <Delegate>AssignPostText</Delegate>

 <Delegate>RefreshDocVariable</Delegate>

 </Argument>

</Method>

GetPageNumber

public delegate string GetPageNumber(XmlNode node)

Returns the page number for the start of the given XML node.

Configuration Example

<!-- EI Method tests GetPageNumber - should display pagenumber of
current xom node in a MessageBox -->

<Method id="GetPageNumberTest" assembly="GetPageNumber"
class="ExtensibilityInterface.Delegates.PageNumberTest"
method="GetPageNumberTest">

 <Argument type="XomCurrentNode" />

 <Argument type="Delegates">

 <Delegate>GetPageNumber</Delegate>

 </Argument>

</Method>

GetPostText

public delegate void GetPostText(XmlNode node, ref string

prevPostTextValue)

Retrieves the value of a PostText portionmark for a given node and stores it in the

incoming prevPostTextValue parameter.

Configuration Example

<!-- PreText delegates test method definition -->

<!-- This method assigns a randomly generated string to the
PreText area of a visible node-->

<Method id="PreTextEI" assembly="UIManipulation"
class="UIManipulation.UIDelegates" method="PreTextPostTextTest">

 <Argument type="XomCurrentNode"/>

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

114 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 <Argument type="Delegates">

 <Delegate>GetNodeProperties</Delegate>

 <Delegate>GetPreText</Delegate>

 <Delegate>AssignPreText</Delegate>

 <Delegate>GetPostText</Delegate>

 <Delegate>AssignPostText</Delegate>

 <Delegate>RefreshDocVariable</Delegate>

 </Argument>

</Method>

GetPreText

public delegate void GetPreText(XmlNode node, ref string

prevPreTextValue)

Retrieves the value of a PreText portionmark for a given node and stores it in the

incoming prevPreTextValue parameter.

Configuration Example

<!-- PreText delegates test method definition -->

<!-- This method assigns a randomly generated string to the
PreText area of a visible node-->

<Method id="PreTextEI" assembly="UIManipulation"
class="UIManipulation.UIDelegates" method="PreTextPostTextTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>GetNodeProperties</Delegate>

 <Delegate>GetPreText</Delegate>

 <Delegate>AssignPreText</Delegate>

 <Delegate>GetPostText</Delegate>

 <Delegate>AssignPostText</Delegate>

 <Delegate>RefreshDocVariable</Delegate>

 </Argument>

</Method>

GetPreviousNode

public delegate XmlNode GetPreviousNode(XmlNode node)

Returns the previous visible node in the document as an XML node. If provided

node is null, the last visible node is returned.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 115

Configuration Example

<!-- GetPreviousNode delegate test method definition -->

<Method id="GetPreviousNodeEI"
assembly="Doc_Navigation_Selection"
class="Doc_Navigation_Selection.Selection_Navigation"
method="GetPreviousNodeTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>GetPreviousNode</Delegate>

 <Delegate>SelectNode</Delegate>

 </Argument>

</Method>

GetSectionMetadata

public delegate XmlElement GetSectionMetadata(XmlNode

visibleNode, bool getWordML)

Returns the metadata for the Word Section to which the provided visible node

belongs.

The visibleNode has to be a visible XOM node. The getWordML boolean flag

indicates whether WordML for the header/footer node must also be returned.

The format of the node that is returned is shown below:

<WordSection orientation="portrait"
breakType="sectionBreakNextPage">

 <!-- orientation = portrait|landscape
breakType=sectionBreakNextPage| sectionBreakContinuous -->

 <Headers>

 <!-- max of 3 Header nodes one each of type
primaryPageHeader, firstPageHeader and evenPageHeader are
possible-->

 <Header type="primaryPageHeader">

 <Fields>

 <!-- Each field corresponds to Word's field - type is the
field type, name is the field name, value is the value held by
this feild -->

 <Field type="wdFieldPage" name="PAGE * MERGEFORMAT"
value="2"/>

 <Field type="wdFieldNumPages" name="NUMPAGES *
MERGEFORMAT" value="1"/>

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

116 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 <Field type="wdFieldDocVariable" name="DOCVARIABLE pf
* MERGEFORMAT" value="pf Number"/>

 </Fields>

 <!-- This is the text in the header/footer range-->

 <Text>Range text content</Text>

 <!-- This is a WordML representation of header/footer
content-->

 <WordML>WordML content</WordML>

 </Header>

 </Headers>

 <Footers>

 <!-- max of 3 Footer nodes one each of type
primaryPageFooter, firstPageFooter and evenPageFooter are
possible-->

 <Footer type="primaryPageFooter">

 <Fields>

 <Field type="wdFieldDocVariable" name="xxx" value="yyy"/>

 </Fields>

 <Text> Range text content</Text>

 <WordML>WordML Content</WordML>

 </Footer>

 </Footers>

</WordSection>

If the getWordML flag is false, the WordML nodes in bold above are absent. This is

done because retrieving WordML from headers and footers is a potentially

expensive operation and should only be done when it is required to parse any

header/footer content that is not in the <Text> node or the <Fields> node.

GetToggleButtonState

public delegate bool GetToggleButtonState(string

externalMethodId)

Returns the state (true or false) of the toggle button specified by the given external

method ID.

Configuration Example

<Method id="GetToggleButtonState" assembly="GetToggleButtonState"
class="ExtensibilityInterface.Delegates.ToggleButtonStateTest"
method="GetToggleButtonStateTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 117

 <Delegate>SelectNode</Delegate>

 <Delegate>GetToggleButtonState</Delegate>

 </Argument>

</Method>

GetXmlResolver

public delegate IXmlResolverProvider GetXmlResolver();

GetXmlResolver is used to return the current instance of the IXmlResolverProvider

class used by Quark XML Author – it could be the default one used by Quark XML

Author or an external one provided by the SetXmlResolver delegate.

Information about creating and using custom resolvers can be found in Section 0.

Configuration Example

<!-- EI Method tests GetXmlResolver - if provider is successfully
obtained message box will indicate that -->

<Method id="GetXmlResolverTest" assembly="GetXmlResolver"
class="ExtensibilityInterface.Delegates.TestXmlResolver"
method="GetXmlResolverTest">

 <Argument type="Delegates">

 <Delegate>GetXmlResolver</Delegate>

 </Argument>

</Method>

GetXomNode

public delegate XmlNode GetXomNode(XmlNode exportedNode)

Returns the XOM node for the specified exported node.

An external process manipulates a document by modifying the XOM. This delegate

is used to create the XOM that represents the exportedNode.

Do not use the document’s CurrentExportedNode as the input parameter. Instead,

you must use a node within the document’s ExportedRoot.

A use case of GetXOMNode is to calculate the CRC for the exportedNode ,

GetXOMNode of the exportedNode and then store that CRC in the XOM.

Configuration Example

<!-- EI Method tests GetXomNode - should display xml of xom node
that corresponds to the first 'p' element of the exported root
node in a MessageBox -->

<Method id="GetXomNodeTest" assembly="GetXomNode"
class="ExtensibilityInterface.Delegates.XomNodeTest"
method="GetXomNodeTest">

 <Argument type="ExportedRoot" />

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

118 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 <Argument type="Delegates">

 <Delegate>GetXomNode</Delegate>

 </Argument>

</Method>

InsertEmphasis

public delegate void InsertEmphasis(XmlNode emphasisFragmentNode,

bool overwriteSelectedContent = false);

Inserts an emphasized text node into the specified XML node at the cursor position.

The selected content may or may not be replaced based on the value of

overwriteSelectedContent. An optional parameter with the default value false has

been introduced in the InsertEmphasis delegate. If the value of this parameter is set

to true, it will replace the selected content on canvas.

For more information, see InternalClass”Insert Emphasis”.

The delegate is available for use in XML Author documents and embedded Word

documents.

InsertEmphasis Parameters

Configuration Example

<!-- InsertEmphasis delegate test method definition -->

<!-- This method tries to insert the emphasis XML fragment at the
current selection -->

<Method id="InsertEmphasisEI" assembly="XomManipulation"
class="XomManipulation.XomDelegates" method="InsertEmphasisTest">

 <Argument type="Tokens">

 <!--location of the XML emphasis chunk which is being
inserted-->

 <Token>c:\temp\AssignTextNodeTest.txt</Token>

 </Argument>

 <Argument type="Delegates">

 <Delegate>InsertEmphasis</Delegate>

 </Argument>

Parameter Required Definition

emphasisFragmentNode yes XmlNode. The fragment node

of emphasis that needs to

inserted at current selection.

overwriteSelectedContent no Boolean. If true, it will insert

an emphasis over the selection

and will overwrite the selected

content. Defaults to false.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 119

</Method>

Configuration Example

<Method id="TestInsertEmphasis" assembly="XOMCurrentTest"
class="XOMCurrentTest.XOMTest" method="TestInsertEmphasis">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>InsertEmphasis</Delegate>

 </Argument>

 <Argument type="Tokens">

 <Token>emphasisName=cite</Token>

 <!-- provide the name of an EmphasisDef that exists as child
to the OLEWordDocument/ParaType/Emphasis -->

 </Argument>

</Method>

InsertNode

public delegate bool InsertNode(XmlNode visibleXomNode, XmlNode

fragmentNode, string elementDisplayName, bool preserveID = false,

bool showErrorMsg = true);

Insert a new node immediately underneath the visibleXomNode specified. The new

node and the entire subtree underneath must be schema compliant and insertable

immediately under the visibleXomNode.

The third parameter, the element display name, needs to be populated only when

there are multiple contexts for the node being inserted. The elementDisplayName

helps to identify the element which the EI method intends to insert from a list of

possible insertables. In all other cases it can be null. If this property is null and there

are multiple insertables possible at the insertable point, the first one in the list will

be inserted.

InsertNode Parameters

Parameter Required Definition

visibleXomNode yes XmlNode. The node under

which the fragmentNode will

be inserted.

fragmentNode Yes XmlNode. The fragment node

to be inserted.

elementDisplayName Yes String. The friendly name of

the element to be inserted.

preserveID Yes Boolean. Preserves the ID of

the inserted fragment node.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

120 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Configuration Example

<!-- InsertNode delegate test method definition -->

<!-- This method tries to insert an XML fragment pointed to by
the Token argument just below the location specified by the
XomCurrentNode-->

<Method id="InsertEI" assembly="XomManipulation"
class="XomManipulation.XomDelegates" method="InsertNodeTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Tokens">

 <!-- location of the xml chunk which is being inserted -->

 <Token>c:\temp\InsertNodeTest.txt</Token>

 </Argument>

 <Argument type="Delegates">

 <Delegate>InsertNode</Delegate>

 </Argument>

</Method>

InvokeInternalClass

public delegate void InvokeInternalClass(string

internalClassName, Hashtable parameters)

Invokes an InternalClass from an extensibility method. This delegate is similar to

the InvokeMethodId delegate except that an InternalClass method is being invoked

instead of an extensibility method. Parameters required by the InternalClass must

be specified in the parameters argument as a Hash table of name-value pairs.

Configuration Example

<!-- EI Method tests InvokeInternalClass - the EI will use the
delegate to invoke "DocumentClose"-->

<Method id="InvokeInternalClassTest"
assembly="InvokeInternalClass"
class="ExtensibilityInterface.Delegates.TestInvokeInternalClass"
method="InvokeInternalClassTest">

 <Argument type="Delegates">

Parameter Required Definition

Defaults to false.

showErrorMsg no Boolean. Executes InsertNode

in silent mode so that no

message or warning is

displayed in case insertion

fails. Defaults to true.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 121

 <Delegate>InvokeInternalClass</Delegate>

 </Argument>

</Method>

InvokeMethodId

public delegate object InvokeMethodId(string eiMethodName,

XmlNode node = null);

Invokes an Extensibility Interfaces method in the DocConfig file that matches the

Extensibility Interface method name passed on specified XOM Node else if

unspecified, on XomCurrentNode. Hence by default this passes the same

XomCurrentNode and ExportedCurrentNode values that were passed to its parent

method (the one calling InvokeMethodId) and if not, then the corresponding

values of specified XOM node. This passes the return value of the invoked method

(if any) back to the caller.

ToggleVisibleElement Parameters

Configuration Example

<!-- InvokeMethodId delegate test definition -->

<!-- This method invokes another EI method called JustAnotherEI -
->

<Method id="InvokeAnotherEI" assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc" method="InvokeMethodIdTest">

 <Argument type="Tokens">

 <Token>JustAnotherEI</Token>

 </Argument>

 <Argument type="Delegates">

 <Delegate>InvokeMethodId</Delegate>

 </Argument>

</Method>

IsEditableElement

Parameter Required Definition

node no Node. This is an optional Xom

Node parameter that can be

specified by calling the EI, if

the eiMethodName needs to be

invoked on a specific XOM

node (other than current xom

node). If unspecified, it will be

invoked on CurrentXomNode.

eiMethodName yes String.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

122 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

public delegate bool IsEditableElement(XmlNode node)

Returns true if the specified node is editable, otherwise it returns false. The node is

not editable and IsEditableElement returns false if:

inv:access is not present •

or inv:access = read-only •

or inv:access = external •

or qxa:read-only = true •

Determination is based on values associated to a proprietary attribute called

inv:access where xmlns:inv=”urn:xpressauthor:xpressdocument”. The inv:access

attribute has two possible values: “read-only” and “external”. The external is set (by

Quark XML Author) for externally referenced elements such as referenced images or

DITA conrefs. The read-only is not set by Quark XML Author but Quark XML

Author will look at any read-only value set (say by an external method) to disable

any UI changes to it.

Similar to inv:access, is the proprietary attribute qxa:read-only where

xmlns:qxa=”urn:schemas-quark-com:xmlauthor”. The difference between the two is

that qxa:read-only is persisted with the document when it is saved. The qxa:read-

only attribute has two possible values: “true” and “false”.

At the element-level, these read-only attributes are used to prevent the editing of an

element.

Referenced or embedded images are still resizable, regardless of the reference

implementation being used unless qxa:read-only is set to true.

Configuration Example

<!-- IsEditableElement delegate test method definition -->

<!-- This method returns whether the incoming node is editable or
not. In this example the EI method is returning an boolean back
to Xpress.

A boolean false returned by any EI method implies a failure which
is interpreted by Xpress to signify halting of any further
activities scheduled to

be executed under the same command(menu item/toolbar click or a
document event trigger). For ex: for the DocumentSave event we
might have a

Ei method which checks for certain problems with the document. If
this EI method returns a false, the save operation is halted and
the user is notified of the failure.-->

<Method id="IsEditableEI" assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc" method="IsEditableElement">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>IsEditableElement</Delegate>

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 123

 </Argument>

</Method>

RefreshDocVariable

public delegate void RefreshDocVariable(XmlNode nodeToBeUpdated);

Method which will update the portion mark for a given node.

Configuration Example

<!-- PreText delegates test method definition -->

<!-- This method assigns a randomly generated string to the
PreText area of a visible node-->

<Method id="PreTextEI" assembly="UIManipulation"
class="UIManipulation.UIDelegates" method="PreTextPostTextTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>GetNodeProperties</Delegate>

 <Delegate>GetPreText</Delegate>

 <Delegate>AssignPreText</Delegate>

 <Delegate>GetPostText</Delegate>

 <Delegate>AssignPostText</Delegate>

 <Delegate>RefreshDocVariable</Delegate>

 </Argument>

</Method>

RefreshDocVariables

public delegate void RefreshDocVariables();

Method which will update the portion marks on screen.

Configuration Example

<!-- This method looks for doc variables called "header" and
"footer" in the Word document and sets them to a specific value--
>

<Method id="AssignDocVariableEI" assembly="UIManipulation"
class="UIManipulation.UIDelegates"
method="AssignDocVariableTest">

 <Argument type="Tokens">

 <!-- the header and footer are doc variables defined in the
dot file of the document. -->

 <!-- In this simple example, the docVariables are set to a
hardcoded value. -->

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

124 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 <Token>header=This is the Header</Token>

 <Token>footer=This is the footer</Token>

 </Argument>

 <Argument type="Delegates">

 <Delegate>AssignDocVariable</Delegate>

 <Delegate>RefreshDocVariables</Delegate>

 </Argument>

</Method>

RemoveContentItem

public delegate void RemoveContentItem(XmlNode node)

This delegate applies to embedded Word documents only. Used to delete the

specified XML node in the Pseudo XOM and its associated Word Content Control in

an embedded Word document

Configuration Example

<Method id="TestRemoveContentItem" assembly="XOMCurrentTest"
class="XOMCurrentTest.XOMTest" method="TestRemoveContentItem">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>RemoveContentItem</Delegate>

 </Argument>

</Method>

AllowToggleTrackChange

public delegate void AllowToggleTrackChange(bool

allowToggleTrackChange)

This delegate sets whether the Track Changes Toggle is enabled or disabled.

Configuration Example

<Method id="SetReviewOptionsEI" assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc" method="SetReviewOptions">

 <Argument type="Delegates">

 <Delegate> AllowToggleTrackChange </Delegate>

 </Argument>

</Method>

AllowAcceptRejectChange

public delegate void AllowAcceptRejectChange (XmlNode node)

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 125

This delegate sets Sets whether the Accept/Reject Changes option is enabled or

disabled according to configuration.

Configuration Example

<Method id="SetReviewOptionsEI" assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc" method="SetReviewOptions">

 <Argument type="Delegates">

 <Delegate> AllowAcceptRejectChange </Delegate>

 </Argument>

</Method>

SetWordUserName

public delegate void SetWordUserName (string userName, string

userInitials)

This delegate is used to set the Username and Initials for the current Word session.

LockActiveDocument

public delegate LockOperationResult LockActiveDocument()

This delegate specifies locking the current XML Author document
as the Active document of Word. The locked document will be
considered as the active document for XA processing even if other
documents are in focus.This delegate returns the
LockOperationResult back to caller

Configuration Example

<Method id="LockingTest" assembly="LockUnlock"
class="ExtensibilityInterface.Delegates.LockUnlock "
method="LockingTest">

 <Argument type="Delegates">

 <Delegate>LockActiveDocument </Delegate>

 </Argument>

</Method>

UnlockActiveDocument

public delegate UnlockOperationResult UnlockActiveDocument()

This delegate specifies the unlocking of the locked XML Author document as the

active word document and this unlocked document will no longer be considered as

an active document when not in focus.This delegate returns the

UnlockOperationResult back to caller .

Configuration Example

<Method id="Unlocking rest" assembly="LockUnlock"
class="ExtensibilityInterface.Delegates.LockUnlock "
method="UnlockingTest">

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

126 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 <Argument type="Delegates">

 <Delegate>UnlockActiveDocument </Delegate>

 </Argument>

</Method>

GetComponentReferenceLink

public delegate XmlNode GetComponentReferenceLink (XmlNode

xmlNode, bool AllowComponentTargets = false)

This delegate returns the link emphasis node for a component.

ResolveReference

public delegate ITarget ResolveReference (XmlNode xmlNode)

This delegate returns the component being referred to by the link emphasis node

GetCurrentNode

public delegate XmlNode GetCurrentNode()

This delegate returns the current visible node in the document as an XML node.

Configuration Example

<Method id="TestEI" assembly="XOMManipulation"
class="ExtensibilityInterface.Delegates.XOM"
method="CurrentNode">

 <Argument type="Delegates">

 <Delegate>GetCurrentNode</Delegate>

 </Argument>

</Method>

ReplaceNode

public delegate bool ReplaceNode(ReplaceMap[] replacePairs)

Used to replace one document node with another. (Does not support replacing

emphasis nodes.) ReplaceMap is a class in the Invision.XpressExtensibilityDelegates

namespace containing three properties. These properties indicate the nodes to be

replaced, the node to use as the replacement, and the replacement strategy to use.

Each property is explained below.

public System.Xml.XmlNode OriginalXomNode;

The XomNode to be replaced.

public System.Xml.XmlNode ReplaceNode;

The new node to replace OriginalXomNode with.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 127

public ReplaceStrategy StrategyToUse =

ReplaceStrategy.Dynamic|ReplaceStrategy.Redraw;

Specifies the replace strategy to use. ReplaceStrategy.Dynamic allows Quark XML

Author to make the decision whether to restyle or use delete-insert.

ReplaceStrategy.Redraw specifically uses the delete and insert strategy.

This delegate was created to support changing list styles. Each list type/style has a

different XAS element definition, therefore, changing the list style requires altering

the document’s element structure. In this scenario, there is no change in the

number of visible elements. When the number of visible elements being replaced is

the same as those replacing them AND the corresponding textnodes and emphasis

are unchanged, the ReplaceStrategy flag allows the XOM fragment to be replaced

while on the Word canvas, the narrative content is merely re-styled. This avoids the

unpleasant, and unnecessary deleting and re-inserting of content on-screen.

Configuration Example

<!-- EI Method tests ReplaceNode - the EI will use the current
xom node to replace the previous xom node-->

<Method id="ReplaceNodeTest" assembly="ReplaceNode"
class="ExtensibilityInterface.Delegates.ReplaceNodeTest"
method="TestReplaceNode">

 <Argument type="XomCurrentNode" />

 <Argument type="Delegates">

 <Delegate>ReplaceNode</Delegate>

 <Delegate>GetPreviousNode</Delegate>

 </Argument>

</Method>

SelectNode

public delegate void SelectNode(XmlNode visibleNode)

Passing null value as argument to SelectNode will collapse selection to end of

currently selected node.

Configuration Example

<!-- This EI method is called by the InvokeAnotherEI EI method
through the InvokeMethodId delegate-->

<Method id="JustAnotherEI" assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc" method="InvokeeTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>SelectNode</Delegate>

 </Argument>

</Method>

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

128 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

SelectNodes

public delegate void SelectNodes(XmlNode startVisibleNode,

XmlNode endVisibleNode);

Selects all content between and including the two endpoint nodes.

Configuration Example

<!-- EI Method tests SelectNode should select current XML Author
node and previous XML Author node -->

<Method id="SelectNodesTest" assembly="SelectNodes"
class="ExtensibilityInterface.Delegates.TestSelectNodes"
method="SelectNodesTest">

 <Argument type="XomCurrentNode" />

 <Argument type="Delegates">

 <Delegate>GetPreviousNode</Delegate>

 <Delegate>SelectNodes</Delegate>

 </Argument>

</Method>

SetSavedState

public delegate void SetSavedState(bool bSaved);

Called by an EI method to set the saved state of the document. Quark adapters use

EI methods to manage document persistence. This delegate is used to ensure that

the state of the document is accurate. This state is evaluated at various times such as

when the user attempts to close the document. In this case, if the document state is

“not saved” then the user should be prompted to save.

Configuration Example

<Method id="SetDocumentSaved" assembly=" assemblyName"
class="Class" method="SetDocumentSaved">

 <Argument type="Delegates">

 <Delegate>SetSavedState</Delegate>

 </Argument>

</Method>

SetXmlResolver

public delegate void SetXmlResolver(IXmlResolverProvider

provider);

Called by an EI method to set a custom XmlResolver instance. Typically, this EI

method is called from within the Connect event in AppConfig.xml.

By default, if SetXmlResolver is not used and the document contains a URL

declaration (DTD or Schema), Quark XML Author attempts to connect to the

resource. If the resource is reachable, the XmlResolver property is set to

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 129

XmlUrlResolver, the native XmlResolver for Quark XML Author. If the resource

cannot be reached, the XmlResolver property is set to null.

SetXmlResolver is used when a custom resolver is needed. The custom resolver must

implement the IXmlResolverProvider interface. Information about creating and

using custom resolvers can be found in Section 0.

Configuration Example

<!-- EI Method tests SetXmlResolver - if resolver is successfully
set message box will indicate that, and you can open DITA files
that contain doctype definitions -->

<Method id="SetXmlResolverTest" assembly="SetXmlResolver"
class="ExtensibilityInterface.Delegates.TestXmlResolver"
method="SetXmlResolverTest">

 <Argument type="Delegates">

 <Delegate>SetXmlResolver</Delegate>

 </Argument>

</Method>

ShadeRegion

public delegate void ShadeRegion(XmlNode[] nodes,

System.Drawing.Color backColor, bool recurse)

Shades an array of nodes with the supplied background shading. The shading will

be performed for all visible nodes in the collection. This includes block elements,

inline images and equations, but does not include emphasis. The recurse parameter

specifies whether the procedure should recursively perform this operation on all

descendants of the node collection.

Configuration Example

<!-- EI Method tests ShadeRegion - should select current XML
Author node and children depending on token -->

<Method id="ShadeRegionTest" assembly="ShadeRegion"
class="ExtensibilityInterface.Delegates.TestShadeRegion"
method="ShadeRegionTest">

 <Argument type="XomCurrentNode" />

 <Argument type="Tokens">

 <Token>true</Token>

 </Argument>

 <Argument type="Delegates">

 <Delegate>ShadeRegion</Delegate>

 </Argument>

</Method>

ToggleEditableRegion

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

130 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

public delegate void ToggleEditableRegion(XmlNode[] nodes, bool

booleanValueToBeSet, bool recurse)

Toggles the editable status of the specified XML node or nodes.

Configuration Example

<!-- ToggleEditableRegion test delegate definition -->

<!-- This particular method will take the current selection and
make it non-editable. -->

<Method id="NonEditableRegionEI" assembly="UIManipulation"
class="UIManipulation.UIDelegates"
method="ToggleRegionEditablePropertyTest">

 <!-- The XomSelectedNodes provides an array of VISIBLE nodes
selected by user -->

 <Argument type="XomSelectedNodes"/>

 <Argument type="Delegates">

 <Delegate>ToggleEditableRegion</Delegate>

 </Argument>

</Method>

UpdateAttributes

public delegate void UpdateAttributes()

Calls the Update Attributes event handler for an external attribute panel.

Configuration Example

<!-- UpdateAttributes delegate test method definition -->

<Method id="AttributePanelEI" assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc"
method="ShowElementAttributes">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate>UpdateAttributes</Delegate>

 </Argument>

</Method>

AssignRefVariable

public delegate void AssignRefVariable(string docVariableName,

string docVariableValue, string fileName = null);

Assigns the named Reference Variable. Reference Variables can help resolve indirect

references. See Variable Reference Support.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 131

AssignRefVariable Parameters

GetRefVariable

public delegate string GetRefVariable(string docVariableName,

string fileName = null);

Returns the named Reference Variable for the Quark XML Author document. See

Variable Reference Support.

GetRefVariable Parameters

GetAllRefVariables

public delegate int GetAllRefVariables(string[,] refVars, string

fileName = null);

Gets all the References Variables or their count for the Quark XML Author

document. See Variable Reference Support.

GetAllRefVariables Parameters

Parameter Required Definition

docVariableName yes String. Name of the document

variable.

docVariableValue yes String. Value of the document

variable. This value should be

direct reference value.

fileName no String. The document’s full

name, including path. Defaults

to null for the current

document.

Parameter Required Definition

docVariableName yes String. Name of the document

variable.

fileName no String. The document’s full

name, including path. Defaults

to null for the current

document.

Parameter Required Definition

refVars yes Array. An array to get all the

reference variables and their

values. Can be null to

determine the number of

variables.

fileName no String. The document’s full

name, including path. Defaults

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

132 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

GetExportedXMLForRefVariables

public delegate string GetExportedXMLForRefVariables(string

fileName = null);

Returns the serialized xml for the reference variables. The serialized xml can

bepersisted by a custom component in BeforeSave Event.

Reference Variables can help resolve indirect references. See Variable Reference

Support.

GetExportedXMLForRefVariables Parameters

ResolveReference

public delegate ITarget ResolveReference(XmlNode xmlNode);

Resolves references for the LinkEmphasis node. Returns the resolved target.

ResolveReference Parameters

Configuration Example

<!-- ResolveReference delegate test method definition -->

<Method id="ResolveReferenceTest" assembly=" ResolveReferenceTest
" class=" ResolveReferenceTest.Example"

method="TestResolveNode">

<Argument type="Delegates">

<Argument type="XomCurrentNode"/>

 <Delegate> ResolveReference </Delegate>

Parameter Required Definition

to null for the current

document.

Parameter Required Definition

filename No String. The document’s full

name, including path. Defaults

to null for the current

document.

Parameter Required Definition

xmlNode yes String. Returns the XmlNode

of type LinkEmphasis for

example “Xref”.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 133

</Argument>

</Method>

EI method Example

This method will resolve link emphasis and the messageBox will display both the

URL path and the element xpath if the current selected node is of type link

emphasis.

Public void TestResolveNode(XmlNode currentXomNode, Delegates[]
delegates)

{

 ResolveReference resolveRefdelegate = delegates[0] as
ResolveReference;

 ITarget target = resolveRefdelegate(currentXomNode);

 MessageBox.Show(target.TargetLocation +" "+ target.
TargetElementXPath);

}

GetInsertableElements

ArrayList GetInsertableElements(XmlNode visibleXomNode);

A Delegate that returns a list of Insertables (captionName) for the provided

visibleXomNode.

GetInsertableElements Parameters

Configuration Example

<!-- GetInsertableElements delegate test method definition -->

<Method id=" GetInsertableElementsTest" assembly="
GetInsertableElementsTest " class="
GetInsertableElementsTest.Example"

method="TestGetInsertableElements">

<Argument type="XomCurrentNode"/>

<Argument type="Delegates">

 <Delegate> GetInsertableElements</Delegate>

</Argument>

Parameter Required Definition

visibleXomNode yes XmlNode. Returns the visible

XomNode whose Insertables

are required.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

134 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

</Method>

EI method Example

This method will return a list of insertables and the messageBox will display all

insertables allowed at the current selection location.

Public void TestGetInsertableElements (XmlNode currentXomNode,
Delegates[] delegates)

{

 GetInsertableElements getInsertableElementsDelegate =
delegates[0] as GetInsertableElements;

 ArrayList insertables = getInsertableElementsDelegate
(currentXomNode);

 stringBuilder sb = new StringBuilder();

 foreach(string insertable in insertables)

 {

 Sb.Append(insertables + " ");

 }

 MessageBox.Show(sb.ToString());

}

GetNodeDefProperties

public delegate void GetNodeDefProperties(string XomName, string

parentXomName, Hashtable ht);

This method is used to get all the properties defined for an element in the schema.

Currently the following properties are supported:

Xmlname •

Friendly •

Style •

defaultHyperlink •

displayAttribute •

insertAfter •

increaseIndent •

decreaseIndent •

externalMethodId •

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 135

default •

numbering •

visible •

readonly •

For getting the properties of the EmphasisNode, the parentXomName is not

required.

GetNodeDefProperties Parameters

Configuration Example

<!-- GetNodeDefProperties delegate test method definition -->

<Method id=" GetNodeDefPropertiesTest" assembly="
GetNodeDefPropertiesTest " class="
GetNodeDefPropertiesTest.Example"

method="TestGetNodeDefProperties">

<Argument type="XomCurrentNode"/>

<Argument type="Delegates">

 <Delegate>GetNodeDefProperties </Delegate>

</Argument>

</Method>

EI method Example

This method will populate hashtable with node def properties of current selected

Node, the message box will show the total number of properties retrieved.

Public void TestGetNodeDefProperties (XmlNode currentXomNode,
Delegates[] delegates)

{

 GetNodeDefProperties getNodeDefPropertiesDelegate =
delegates[0] as GetNodeDefProperties;

 Hashtable ht = new Hashtable();

Parameter Required Definition

XomName yes String. The XomName whose

properties are required.

parentXomName Yes String. The possible parent

Xom Name for which the node

properties are required.

ht Yes Hashtable. A hashtable to fill

the required properties.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

136 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 getNodeDefPropertiesDelegate (currentXomNode.LocalName ,
currentXomNode.ParentNode.LocalName,ht);

MessageBox.Show("Total Number of properties retrieve is : "
ht.Count);

}

GetNodeDirtyType

Public delegate DirtyType GetNodeDirtyType (xmlNode xomNode,

List<string> xmlAttribList)

This delegate returns the dirty type of xomNode. This delegate can be used to

identify which of the nodes in the document are actually dirty and the level of

dirtiness. If a node is dirty due to kAttribute, then xmlAttribList will contain the list

of xml attribute names due to which nodes becomes dirty.

Level of dirtiness (highest to lowest):

kNew, kRemove 1.

kModified 2.

kAttribute 3.

Public enum DirtyType
{
 kNone,
 kModified,
 kNew,
 kRemoved,
 kAttribute
}

Configuration example:

<!-- GetNodeDirtyType delegate test method definition -->

 <Method id="GetNodeDirtyTypeEI" assembly="XXXXX " class="XXXXX"

 method="GetNodeDirtyTypeTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

 <Delegate> GetNodeDirtyType </Delegate>

 </Argument>

 </Method>

SetReferenceAttributes

Public delegate bool SetReferenceAttributes (xmlNode xomNode,

Hashtable referenceAttributes);

This delegate is used to add passed direct and indirect reference attribute value in

XOMNode, where allowed. It also handles shading for the same.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 137

Returns true if added, false otherwise.

SetReferenceAttributes Parameters

Configuration example:

<Method id=”setReferenceAttributesTest”

 assembly=”MiscellaneousDelegates”

 class=”MiscellaneousDelegates.Misc”
method=”SetReferenceAttributesTest”>

 <Argument type=”XomCurrentNode”/>

 Argument type=”Delegates”>

 <Delegate>SetReferenceAttributes</Delegate>

 </Argument>

</Method>

El method example:

public bool SetReferenceAttributesTest(XmlNode node, Delegate[]
delegates)

 {

 try

 {

 SetReferenceAttributes
setReferenceAttributesDelegate = delegates[0] as
SetReferenceAttributes;

 if (setReferenceAttributesDelegate != null &&
node != null && node is XmlElement)

 {

 // Using SetReferenceAttributes Delegate to
set the conkeyref and conref attr

Parameter Required Definition

xomNode yes XmlNode. The XOMNode to

set the reference attribute to.

referenceAttributes yes Hashtable. A Hashtable with

reference keys and

corresponding values. The only

valid keys are

“DirectReference” and

“IndirectReference”.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

138 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 Hashtable ht = new Hashtable();

 ht.Add("DirectReference", "c:/Dummy.xml");

 ht.Add("IndirectReference", "c:/Dummy1.xml");

 return setReferenceAttributesDelegate(node,
ht);

 }

 }

 catch (Exception e)

 {

System.Diagnostics.Debug.WriteLine("SetReferenceAttributes
Exception :" + e.Message + "\nStackTrace:" + e.StackTrace);

 }

 return false;

 }

RemoveReferenceAttributes

Public delegate bool RemoveReferenceAttributes (xmlNode xomNode)

This delegate is used to remove all the direct and indirect reference attribute values

from the passed XOMNode. It also handles shading for the same.

Returns true if removed, false otherwise.

RemoveReferenceAttributes Parameters

Configuration example:

<Method id="RemoveReferenceAttributesTest"
assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc"
method="RemoveReferenceAttributesTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Delegates">

<Delegate>RemoveReferenceAttributes</Delegate>

 </Argument>

</Method>

Parameter Required Definition

xomNode yes XmlNode. The XOMNode to

set the reference attribute to.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 139

El method example:

 public bool RemoveReferenceAttributesTest(XmlNode node,
Delegate[] delegates)

 {

 try

 {

 RemoveReferenceAttributes
removeReferenceAttributesDelegate = delegates[0] as
RemoveReferenceAttributes;

 if (removeReferenceAttributesDelegate != null &&
node != null && node is XmlElement)

 {

 return
removeReferenceAttributesDelegate(node);

 }

 }

 catch (Exception e)

 {

System.Diagnostics.Debug.WriteLine(RemoveReferenceAttributesExcep
tion : "+ e.Message + "\nStackTrace:" + e.StackTrace);

 }

 return false;

 }

SetListRestartContinueNumbering

Public delegate void SetListartRestartContinueNumbering (xmlNode

xomNode, bool restart)

This delegate is used to restart/continue the list item.returns the dirty type of

xomNode.

SetListRestartContinueNumbering Parameters

Configuration example:

 <Method id="SetListRestartNumberingTest"
assembly="MiscellaneousDelegates"

Parameter Required Definition

xomNode yes XmlNode. The XOMNode to

set the reference attribute to.

restart yes If set to true, restart the list

item, else continue.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

140 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

class="MiscellaneousDelegates.Misc"
method="SetListRestartContinueNumberingTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Tokens">

 <Token>True</Token>

 </Argument>

 <Argument type="Delegates">

<Delegate>SetListRestartContinueNumbering</Delegate>

 </Argument>

</Method>

<Method id="SetListContinueNumberingTest"
assembly="MiscellaneousDelegates"
class="MiscellaneousDelegates.Misc"
method="SetListRestartContinueNumberingTest">

 <Argument type="XomCurrentNode"/>

 <Argument type="Tokens">

 <Token>False</Token>

 </Argument>

 <Argument type="Delegates">

<Delegate>SetListRestartContinueNumbering</Delegate>

 </Argument>

</Method>

EI method example:

public void SetListRestartContinueNumberingTest(XmlNode
curXomNode, string []restart, Delegate[] delegates)

 {

 try

 {

 SetListRestartContinueNumbering
setListRestartContinueNumbering = delegates[0] as
SetListRestartContinueNumbering;

 if (setListRestartContinueNumbering != null &&
curXomNode != null && curXomNode is XmlElement)

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 141

 {

 // Set restart numbereing for New Numbered
list inserted and not new List item added

 XmlNode listItemNode =
curXomNode.SelectSingleNode("self::*[starts-with(local-
name(),'oli')]");

 if (listItemNode != null)

 {

setListRestartContinueNumbering(listItemNode, restart[0] ==
"True");

 }

 }

 }

 catch (Exception e)

 {

System.Diagnostics.Debug.WriteLine("SetListRestartContinueNumberi
ng Exception :" + e.Message + "\nStackTrace:" + e.StackTrace);

 }

 }

 RemoveRefVariable

Public delegate void RemoveRefVariable (string docVariableName,

string filename = null)

This delegate is used to remove the named reference variable from the Quark XML

Author document. See Variable Reference Support.

RemoveRefVariable Parameters

List of Available Document Events

The available document events are defined below.

Parameter Required Definition

docVariableName yes String. Name of the document

variable to be removed.

filename yes The document;s full name,

including the path. Defaults to

null for the current document.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

142 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

For information on using events, see section 6.2.2.1, “Calling the EI Method from a

Document Event”.

Activated

The Activated event fires when a document is created, opened or when the

document window receives focus.

AfterSave

The AfterSave event fires after a document is saved.

BeforeComponentDelete

The BeforeComponentDelete is fired by a user action or the DeleteNode EI delegate

when the action will result in one or more element being deleted. Specifically, the

event is fired before all specified elements have been deleted.

BeforeComponentDelete supports the DeleteNodes argument type. A return value of

false will cancel the delete operation.

BeforeOpen

The BeforeOpen event fires just prior to the opening of a document. Typically used

in conjunction with conversions, or any other preprocessing that cannot be

accomplished with a transform. For example, can be used to in conjunction with

the conversion of XML entities (HTML and other) to Unicode characters.

Definition:

BeforeOpen is a child of Namespace.

Any ExtensibilityMethod registering for this event has access to all content in the

document, two document arguments and one token argument type. The three

document arguments are ExportedRoot which is the document content that can be

manipulated and returned, the Filename argument which is the full name of the file

being opened and the standard Tokens argument.

The following AppConfig fragment sample shows this event being used to invoke

an EI method.

<BeforeOpen assembly="EIHarness" method="ExecuteBeforeOpenStuff"
class="EIHarness.EITester" >

 <Argument type="ExportedRoot"></Argument>

 <Argument type="Filename"></Argument>"

 <Argument type="Tokens">

 <Token>xform1= dita/transform1.xsl</Token>

 <Token>xform2= dita/transform2.xsl </Token>

 </Argument>

</BeforeOpen>

Responsibilities:

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 143

If the BeforeOpen EI throws an exception or returns false the Open process is

cancelled.

Dependencies / Constraints:

A Namespace node may contain both the BeforeOpen node and the transform

attribute. See section 8.7.1, Namespace. The Namespace reevaluate attribute is

associated with the BeforeOpen event and the transform attribute.

BeforePaste

Whenever the user attempts to insert an XML component, the BeforePaste event

fires, the component is attached to the XOM, the content is inserted into the

document, and then the InsertComponent event fires. An EI method associated

with this event can receive the argument type PasteNode. This is the XML node

fragment about to be inserted. A method associated with BeforePaste can modify

the PasteNode XML—it can modify attributes, modify element structure, and so

forth, to conform to schema or business requirements.

BuildStyleList

Whenever the selection within a document changes, the BuildStyleList event fires in

order to rebuild the list of elements that may be added to the document in the new

cursor location.

ComponentDelete

The ComponentDelete event fires after one or more elements have been deleted as a

result of a user action or is raised by the DeleteNode EI delegate. Specifically, the

event is fired after all specified elements have been deleted.

Similar to BeforeComponentDelete, ComponentDelete supports the DeleteNodes

argument type. However, in the case of ComponentDelete, the nodes have been

detached from the tree. To provide the EI developer context, we also supply

references to the deleted component’s former parent node. The DeletedNodes

argument is now a 2-dimensional array that associates each deleted node with its

parent. The deleted node and its parent are essentially stored as a pair.

(0,0) accesses deleted node 1(0,1) accesses deleted node’s parent 1

(1,0) accesses deleted node 2(1,1) accesses deleted node’s parent 2

Return values from any of the invoked EI methods will not affect the delete

operation.

The ComponentDelete event is not fired for the following:

deletion of emphasis nodes •

DeleteRow(), DeleteColumn() and cell merges •

Connect

The Connect event, used only in AppConfig.xml, fires immediately after Quark

XML Author is loaded. It is used to connect Quark XML Author to other

applications. Connect is the only event that is “global”.

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

144 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

To use Connect, define an EI Method for it in the standard manner. Connect can

only take delegates or tokens as arguments.

In the ExtensibilityInterface node, you must also define a <Connect> child node

that calls the EI Method. In the example below, the EI Method has been defined

with the id value DSConnection.

<Connect>

<ExtensibilityMethod id="DSConnection"/>

</Connect>

DocClosed

The DocClosed event fires just prior to the closing of a Quark XML Author

document. A separate DocClosed event is raised for each Quark XML Author

document. All EI methods associated with this event are invoked sequentially. If an

associated EI method returns false, the Close operation is cancelled. If the EI

method raises an exception, a confirmation dialog prompts the user whether to

continue or cancel the closing of the document.

DocOpened

The DocOpened event fires when a document is opened. Called before the Initialize

event.

DoubleClickHeaderFooter

The DoubleClickHeaderFooter event fires when the user double clicks the header or

footer region of the document if AllowHeaderFooterEdit (Section 9.8) is set to true.

Initialize

The Initialize event fires after DocOpened when a document is opened, but only for

documents with no Binary data.

InsertElementXom

The InsertElementXom event fires for each element that is added to the XOM,

regardless of whether that element is visible in the user interface. Not called for

components attached via import, paste or InsertNode delegate.

InsertElementUI

The InsertElementUI event is similar to InsertElementXom, but fires only when

adding elements that are visible in the user interface. For example, if a Note element

was added, and it was itself invisible to the UI, but contained visible Title and

Paragraph child elements, InsertElementXom would fire three times, but

InsertElementUI would fire only twice.

InsertComponent

The InsertComponent event fires for drag and drop import, component paste, user-

inserted elements, and the InsertNode delegate. The event is raised once for every

top-level element that is inserted. For example, if the user inserts an element named

Section that contains required Title and Para child elements, the firing order of

events is as follows:

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 145

Section - InsertElementXom, InsertElementUI (if visible)

Title - InsertElementXom, InsertElementUI (if visible)

Para - InsertElementXom, InsertElementUI (if visible)

Section - InsertComponent

An EI method associated with this event can receive the argument type PasteNode.

This is the XML node fragment about to be inserted.

InsertComponent will fire when splitting an element if the ElementDef in the XAS

file uses the insertAfter attribute.

Drag and Drop

There is not an OnDrop event. Use the linkDropHandler attribute to specify the ID

of the EI method to be called when the user drops a hyperlink onto the element. See

“Table 14‑1: ElementDef Attributes”.

This feature overrides any internal XML Author behavior. For example, in the

sample below, if “tocnumtitle” supports inline media elements, and the hyperlink

dropped on this element happens to be a hyperlink to a media that the user wants

to insert, the inline media behavior will never be invoked. Instead the EI method

specified in the linkDropHandler attribute is invoked.

Example configuration

<ElementDef name="tocnumtitle" xmlname="title" friendly="Numbered
Title" style="Heading 8" linkDropHandler="TestLinkDropHandler">

 <Section>

 <Para>

 <Emphasis>

 &emphasis-ref;

 </Emphasis>

 </Para>

 </Section>

 ...

</ElementDef>

Example method

<Method id="TestLinkDropHandler"
assembly="TestEIs\DragDropTester" class="DragDropTester.Test"
method="TestLinkHandlerEI">

 <Argument type="Tag"/>

</Method>

APPLICATION CONFIGURATION: EXTENSIBILITY INTERFACE

146 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Tag: A special argument that contains the hyperlink that was dropped.

RightClickPreText

The RightClickPreText event fires when the user clicks on the portionmark pre-text

area of a visible node. Used only in the DocConfig file.

RightClickPostText

The RightClickPostText event fires when the user clicks on the portionmark post-

text area of a visible node. Used only in the DocConfig file.

Save

The Save event is fired just before the document is saved locally. Any EI methods

specified in the Save node are executed and if any of them throws an exception or

returns false, the save is cancelled.

UpdateAttributes

The UpdateAttributes event fires when an attribute is updated via the internal

attribute panel. Any external methods defined under the <UpdateAttributes> tag in

the EI are executed. If an external attribute panel is used to change attributes, there

is a corresponding UpdateAttributes delegate which fires the UpdateAttributes event

separately

StyleListParents

This is a special argument type used exclusively by the BuildStyleList EI methods. It

contains a list of parents of currently insertable elements provided by the styleList

argument with a one – on – one linkage with stylelist items. This argument can help

the EI developer to distinguish between insertables under different parents with

same name.

APPLICATION CONFIGURATION: RESOLVEREFERENCES

QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN GUIDE |

Application Configuration:
ResolveReferences

Quark XML Author provides two methods for inserting referenced content into a

document: a drag-and-drop operation and pasting a reference from the clipboard—if

a user copies a component reference to the clipboard, Assign Reference becomes

available on the Quark XML Author component context menu. In both cases,

Quark XML Author must be able to resolve the reference hyperlink. The

AppConfig.xml file’s ResolveReferences node provides the means to accomplish this

task.

The Reference Node

ResolveReferences contains a collection of Reference nodes. Each Reference node

identifies the Content Management System via its pattern attribute, and calls the

external DLL that performs the download operation. ResolveReferences and the

Reference node take the following format:

<ResolveReferences>
 <Reference pattern="pattern" assembly="assembly name"
class="class name">
 <Token>Token 1</Token>
 <Token>Token 2</Token>
 <Token>Token #</Token>
 </Reference>
 <!-- Additional Reference nodes as required -->
</ResolveReferences>

Pattern Attribute

The pattern attribute’s value must be a regular expression that contains a matching

pattern for the URI that refers to the CMS. When an object is dragged into Quark

XML Author, Quark XML Author searches for a pattern that can be matched against

the URI for the object being dragged into it. For example:

pattern=”http://yellowstone/.*”

This would match everything following http://yellowstone in a URI.

To allow all URIs to match a single Reference node, the wildcard character phrase

(.*) can be used as the value of the pattern attribute. The period must be present; an

asterisk alone will match only one wild card character.

APPLICATION CONFIGURATION: RESOLVEREFERENCES

148 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Assembly and Class Attributes

The assembly and class attribute values specify the assembly and class in which the

download method for the CMS can be found. The download method that must be

implemented in the DLL is discussed in section 17, “Integration with Content

Management Systems”.

Specify the assembly within the class as the value of the assembly attribute. Specify

the fully qualified class name, without the .dll extension, as the value of the class

attribute.

Tokens

Parameter values that are required (if any) by the download method in the external

DLL are specified as Tokens within the Reference node. Each parameter value is

supplied as the content of a separate Token element.

APPLICATION CONFIGURATION: MISCELLANEOUS ITEMS

QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN GUIDE |

Application Configuration:
Miscellaneous items

There are additional elements that must be set to configure the application. The first

set of elements affect the application environment. The last specifies namespaces for

your organization’s document classes, and is considered separately.

CultureName

Defines the language and language culture. Defaults to en-us, as shown in the

example.

<CultureName>en-us</CultureName>

Language and Numerical Content

Quark XML Author saves numerical content, including date and time values, in

English format. When opening documents, Quark XML Author expects numerical

content to be in English format.

EnableProgressDialogs

Used to enable the display of the various progress bar dialogs in Quark XML Author.

For example, opening a document containing a table or splitting table cells.

Defaults to true.

<EnableProgressDialogs>false</EnableProgressDialogs>

ErrorLogging

Determines if an error log should be defined when Quark XML Author is run. The

name of the log file is XML Author Log.txt and can be found in Quark XML

Author folder with the user’s Application Data folder.

<ErrorLogging>true</ErrorLogging>

ExtendedLoggingInfo

If enabled, ExtendedLoggingInfo will log additional details about exceptions being

logged in XML Author Log.txt. This flag tries to collects specific information in case

APPLICATION CONFIGURATION: MISCELLANEOUS ITEMS

150 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

of any error or data loss happening in XML Author and logs that information in the

log file. This flag should be set to true on the machine where data loss or

corruption, if any, is occurring and the logs should be sent to Quark XML Author

Customer support team for analysis.

<ExtendedLoggingInfo>false</ExtendedLoggingInfo>

LogFilePath

<LogFilePath>{path}</LogFilePath>

The optional LogFilePath element can be used to specify a file path (drive or UNC)

for the file created in conjunction with ErrorLogging. It supports variable

placeholders for special folders such as APPDATA and MYDOCUMENTS. If this

element is omitted, Quark XML Author continues to use the default location.

Defaults to:

{the path of the current system’s temporary folder}\Quark\XML Author.

UndoHistory

Defines the number of sequential actions that may be reversed when using the

Undo command. In the example, up to 50 actions may be reversed.

<UndoHistory>50</UndoHistory>

There is no maximum, but with some features such as table features the number of

undo operations can go up exponentially so best practice is to set the value to 500.

Namespaces

The Namespaces node contains two types of child elements: Namespace and

NotSupported.

Namespace

Each supported document class will have its own Namespace element within the

Namespaces node.

Table 8‑1: Namespace Attributes

Attribute Required Definition

config yes Specifies the location and

filename of the document

configuration file for the

document class. The location

must be specified as a relative

path.

internalName no For multiple definitions with

the same xmlname property at

different levels in the XAS,

APPLICATION CONFIGURATION: MISCELLANEOUS ITEMS

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 151

Attribute Required Definition

identifies a single element

definition that maps to the

root node of the incoming

document.

mapperAssembly no The attribute, along with

mapperClass, points to an

external method that allows

for an external condition to be

injected in the evaluation of a

particular namespace node.

mapperClass no This attribute, along with

mapperAssembly, points to an

external class that implements

the Invision.Xpress.

Interfaces.IConditionMapper

containing the condition to be

evaluated.

productLine no Specifies a name for a

document class which can be

matched by the productLine

processing instruction. May be

defined in conjunction with

uri and root.

reevaluate no If set to true, specifies that

namespace selection logic is

run again after the transform

and any associated EI (i.e.

BeforeOpen) returns.

Reevaluation (and optional

transform / BeforeOpen)

continues until a namespace is

selected without a transform /

BeforeOpen or reevaluate

equals false. Used in

conjunction with transform

attribute and BeforeOpen

document event.

root no Specifies the root element for a

document class which may be

matched by the document root

element. Maybe defined in

conjunction with productLine

and uri.

schema yes Specifies the location and

filename of the Quark XML

Author Structure (.xas file) for

the document class. The

APPLICATION CONFIGURATION: MISCELLANEOUS ITEMS

152 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

NotSupported

The NotSupported element allows a relevant “not supported” user message when

the user attempts to open an XML document that does not match one of the

supported document classes.

Table 8‑2: NotSupported Attributes

Attribute Required Definition

location must be specified as a

relative path.

template yes Specifies the location and

filename of the Word template

(.dot file) for the document

class. The location must be

specified as a relative path.

transform no Specifies the location and

filename of the default

stylesheet for the document

class. The location must be

specified as a relative path. A

Namespace node may contain

both the BeforeOpen node and

the transform attribute. The

Open transform and any

ExtensibilityMethodhas access

to all content in the document.

uri no Specifies a URI for the

document class which can be

matched by the uri attribute of

the document root element.

May be defined in conjunction

with productLine and root.

May use the * wildcard

character. For example,

uri=”urn:invision:doc*” would

match both “urn:invision:doc”

and “urn:invision:doc:trm”.

Attribute Required Definition

message yes Specifies the message to be

displayed when the user

attempts to open an

unsupported

productLine no Specifies a name for a

document class which can be

matched by the productLine

processing instruction. May be

APPLICATION CONFIGURATION: MISCELLANEOUS ITEMS

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 153

TempFilePath

The optional TempFilePath element can be used to specify a file path (drive or UNC)

for temp file storage. It supports variable placeholders for special folders such as

APPDATA and MYDOCUMENTS. If this element is omitted, Quark XML Author

continues to use the default location.

Blocking Shortcut Keys

Microsoft Word provides a variety of built-in shortcut keys to invoke dialogs,

change text formatting, and perform other actions that can “break” a Quark XML

Author document. In addition, some features in Word are not supported and should

be blocked. The ShortcutKey section of the DocConfig can be used to block these

built-in shortcut keys.

 Quark recommends that you do not block shortcut keys in the

AppConfig file. If you do, the shortcut keys will be unavailable even when the user

is working with a standard Word document.

To block a shortcut key, simply create a ShortcutKey node for it in the Shortcuts

node of the DocConfig file. For example, to disable the Ctrl + R shortcut (which

right-justifies the selected paragraph), you would add the following node to the

ShortcutKeys element:

Attribute Required Definition

defined in conjunction with

uri and root.

root no Specifies the root element for a

document class which may be

matched by the document root

element. Maybe defined in

conjunction with productLine

and uri.

uri no Specifies a URI for the

document class which can be

matched by the uri attribute of

the document root element.

May be defined in conjunction

with productLine and root.

May use the * wildcard

character. For example,

uri=”urn:invision:doc*” would

match both “urn:invision:doc”

and “urn:invision:doc:trm”.

APPLICATION CONFIGURATION: MISCELLANEOUS ITEMS

154 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

<ShortcutKey key=”R” shift=”false” ctrl=”true”/>

When the keystroke combination is pressed, Quark XML Author intercepts it.

Because the node contains no internal class or extensibility interface call, Quark

XML Author then discards the keystroke combination and nothing happens.

Note that if you define a keystroke combination, as described in section 3, that is

identical to an existing combination, the redefined version will be used by Quark

XML Author.

The example below provides some commonly-disabled shortcut keys. Note that this

list is not intended to be comprehensive or definitive; your organization may need

to disable other keystroke combinations, or may wish to use some of them.

<ShortcutKey key="C" shift="true" ctrl="true"/>
<ShortcutKey key="D" shift="false" ctrl="true"/>
<ShortcutKey key="E" shift="false" ctrl="true"/>
<ShortcutKey key="J" shift="false" ctrl="true"/>
<ShortcutKey key="K" shift="false" ctrl="true"/>
<ShortcutKey key="L" shift="false" ctrl="true"/>
<ShortcutKey key="M" shift="false" ctrl="true"/>
<ShortcutKey key="R" shift="false" ctrl="true"/>

DisableTemplateAddins

Used to disable all third-party template add-ins. See “Hiding/Disabling Ribbon Tabs

for Third-Party Software”. This feature is specified in the AppConfig.

The Quark XML Author add-in cannot influence the position or visibility of the

ribbon tabs of a third-party add-in. Therefore, disabling the add-in is the only way

to remove its ribbon tab when Quark XML Author is in focus/active.

Two types of add-ins are used: Template and COM. For example, Adobe Acrobat is a

COM add-in. XML Author can disable template add-ins and some COM add-ins.

COM add-ins installed as available “to all users” cannot be disabled by Quark XML

Author. When the user views a standard Word document, COM add-ins that have a

user interface components will be re-displayed. In addition, add-ins that are needed

by Quark XML Author may not disabled.

APPLICATION CONFIGURATION: MISCELLANEOUS ITEMS

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 155

Figure 8‑1: Third-party Template Add-ins

Figure 8‑2: Third-party COM Add-ins

This feature can be used in the following ways:

Disable all add-ins •

APPLICATION CONFIGURATION: MISCELLANEOUS ITEMS

156 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Disable all add-ins except the specified list •

Disable the specified list of add-ins •

Table 8‑3: DisableTemplateAddins Attributes

Disable all add-ins

Disables all add-ins possible.

Example

<DisableTemplateAddIns>
 <All/>
</DisableTemplateAddIns>

Disable all add-ins except the specified list

Disables all add-ins possible except those whose name contains “MathType”.

Example

 <DisableTemplateAddins>
 <All>
 <Except>MathType</Except>
 </All>
 </DisableTemplateAddins>

Disable the specified list of add-ins

Disables all add-ins whose name contains “MathType” or “Our Custom Addin”.

Example

 <DisableTemplateAddins>
 <AddIn>MathType</AddIn>
 <AddIn>Our Custom Addin</AddIn>
 </DisableTemplateAddins>

ImageFilePath

<ImageFilePath>{path}</ImageFilePath>

Attribute Required Definition

AddIn no Specifies the name of the add-

in that should be disabled. This

is a case-sensitive wildcard. If

the wildcard is contained in

any part of an add-in’s name

then this is considered to be a

match and the system attempts

to disable that add-in.

All no Specifies that the system

should attempt to disable all

add-ins. The child node

<Except> is used to specify

add-ins that should be omitted

from the disable attempt.

APPLICATION CONFIGURATION: MISCELLANEOUS ITEMS

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 157

The optional ImageFilePath element can be used to specify a file path (drive or

UNC) that specifies the “export” location where images in embedded Word

documents will be stored. Hrefs in serialized Smart Content will include these paths.

See “OLE Word Document Integration”. It supports variable placeholders for special

folders such as APPDATA and MYDOCUMENTS. If this element is omitted, Quark

XML Author continues to use the default location.

Defaults to:

{the path of the current system’s temporary folder}\Quark\XML Author.

DOCUMENT LEVEL CONFIGURATION

158 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Document Level Configuration

DocConfig files can have any name, but will typically be named to indicate the

document schema it supports. For example, a schema named chapter.xas might

have a DocConfig file named chapter-config.xml.

In addition to the same Menu, CommandBar, and Shortcut configuration options

that the AppConfig file has, the DocConfig file includes the elements defined in the

rest of this section.

Portionmarks

Every visible element in a Quark XML Author document has a pre-text and post-text

area that can be accessed and changed by four extensibility delegates. See section

6.4 for definitions of these delegates, which are AssignPostText, AssignPreText,

GetPostText, and GetPreText. In addition, two document events (RightClickPreText

and RightClickPostText, discussed in section 6.5) provide a means to launch

Extensibility Interface methods whenever they are invoked. Which Portionmarks

are available, their values, and the elements to which they belong are specified in

the DLL that these delegates invoke.

Portionmarks can be specifically configured at the document, cell, element and cell

element level for any visible element, empowering administrators to control the

impact that enabling Portionmarks may have on the performance of the document.

Configuring Portionmarks at the table level: •

The configurability of Portionmarks is controlled hierarchically. For example, if

Portionmarks are enabled at the Document level, but disabled at the Cell level,

then subsequent element level and cell element configurations become

meaningless. The configurability follows the following hierarchical order:

Document Portionmarks > Cell Portionmarks > Element Portionmarks > Cell

Element Portionmarks

Configuring Portionmarks for elements outside a table: •

Portionmarks for elements outside a table are governed by the Element

Portionmarks configuration. The configurability follows the following hierarchical

order:

Document Portionmarks > Element Portionmarks

An example is shown below.

<ElementDef name="table-sectionx1" xmlname="section"
friendly="Single Section" visible="true" style="SectionMarker"
allowPortionmark="true">

DOCUMENT LEVEL CONFIGURATION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 159

 <Section>
 <Sequence minOccurs="1" maxOccurs="1">
 <SectionType name="p-start" readonly="true"
default="Section Start"/>
 …….
 ……… </Section>
 <Attributes>
 ……..
 </Attributes>
 </ElementDef>

Making Portionmarks available requires that the Portionmarks node in the

document configuration file be populated with Portionmark child elements, which

are defined below.

1. Portionmark Attributes

Table 9‑1: Portionmark Attributes

An example is shown below.

<Portionmarks addCellPortionmark="false"/>
<Portionmark type="PreText" defaultDisplay="true"
styleName="Portionmark"/>
<Portionmark type="PostText" defaultDisplay="true"
styleName="Portionmark"/>
</Portionmarks>

NOTE: Setting the value of the addCellPortionmark parameter to true might

degrade the performance of some table operations and the document open/save

operation.

Attribute Required Definition

defaultDisplay no If set to true, Word will display

the portionmark when the

document is initially opened.

styleName no The name of the Word style in

the Word template that will be

used to render the portionmark

data on the screen. The Portion

mark style has to be a character

based style and not a para

based style.

type yes Must have a value of either

PreText or PostText. Only one

node of each is allowed.

addCellPortionmark no If set to false, the table cells

portionmarks will be disabled.

If set to true, the table cells

portionsmarks will be enabled.

If it is not defined, then the

default value is false.

DOCUMENT LEVEL CONFIGURATION

160 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

ReferenceShadingColor

Defines the color that will be used as shading for elements that are referenced from

external sources. The color is defined by the values of the red, green, and blue

attributes, with each value being an integer between 0 and 255.

An optional child element, FailedShadingColor, can be used to specify the color to

be used for a failed or broken reference. The color is defined by the values of the

red, green, and blue attributes, with each value being an integer between 0 and

255.

AllowRestartContinueNumbering

If set to Yes, allows the user to restart numbering when a second numbered list is

inserted within a document. If set to No, all numbered lists within the document

will be numbered sequentially, with no restarting allowed.

DefaultSaveOptions

Attributes of this element specify options for all save operations:

Table 9‑2: DefaultSaveOptions Attributes

ComponentCopy

If present, this optional node either invokes a transform method specified by its

transform attribute, or invokes an Extensibility Interface method, via its

getReferenceId attribute, that returns the conref or cross reference target string.

Table 9‑3: ComponentCopy Attributes

Attribute Definition

allowLocalSave Boolean. Defaults to true. If set to false, the

user will not be prompted to save changes when

the document is closed, even if there are

unsaved changes. The user will instead be

prompted, “Do you wish to close XML Author

and lose unsaved changes?”

defaultFilepath When specified, this path is used as the Save In

folder in the Save As dialog. The dialog uses

this path as the current folder of the dialog. The

user is not restricted to this path.

filter Specifies the default filter options for the Save

dialog box.

nativeFormat Boolean. Set to true if document is to be saved

in Word format, false if it is to be saved only as

XML. Defaults to true.

transform XSL code for transforming the document being

saved.

DOCUMENT LEVEL CONFIGURATION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 161

Commenting

The Commenting node allows you to specify additional custom attributes, and

enumerated values for those attributes, for comments that the user adds to the

document in the authoring environment. The author can access these attributes by

right-clicking in the Word Comment balloon.

The Commenting node contains one or more Attribute nodes.

Attribute

Each Attribute child element of Commenting describes one attribute that can be

applied to document comments.

Table 9‑4: Commenting > Attribute Element Attributes

QuarkSection-Level4

Each Attribute child element of Commenting contains one or more Enumeration

nodes that describe the possible values that the author can assign.

Table 9‑5: Commenting > Attribute > Enumeration Element Attributes

Attribute Required Definition

getReferenceId no The ID of the Extensibility

Interface method that returns

the conref or cross reference

target string.

transform no Path to the stylesheet used to

transform a copied

component.

Attribute Definition

author-att The name of the attribute that will contain the

author’s ID value for each comment.

dateTime-att The name of the attribute that will contain

date/time stamp value for each comment.

value-att The name of the attribute that will contain the

value supplied by the user for each comment.

Attribute Definition

autotext Any autotext that is to be appended to the

comment when the value is selected. You may

use the keywords {author} and {timestamp} to

insert the author ID and a timestamp along

with the selected value.

menuitem The value as it will appear to the user in the

context menu.

DOCUMENT LEVEL CONFIGURATION

162 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Break

This optional node supports section, page, and column breaks, in conjunction with

the sectionBreak, pageBreak, and columnBreak datatypes. See Table 11‑3, in section

11.6.2, for more information on these datatypes and how they are used.

The Break node has three optional child elements: SectionBreak, PageBreak, and

ColumnBreak. These elements can have one of two values: restricted and

unrestricted. These elements default to unrestricted, and if the Break node is

absent from the DocConfig file, the defaults are applied. In the example below,

these types of breaks are restricted:

<Break>
 <SectionBreak>restricted</SectionBreak>
 <PageBreak>restricted</PageBreak>
 <ColumnBreak>restricted</ColumnBreak>
</Break>

SectionBreak

When SectionBreak is set to restricted, the Insert Section Break command can only

be invoked when the cursor position in the document is on an Empty (Insertion

Point) and the next visible element has a sectionBreak attributeType defined (see

section 12.3).

When SectionBreak is set (or defaults) to unrestricted, the InsertSectionBreak

command can be invoked when the cursor position in the document is on an

Empty (Insertion Point) preceding any visible document element. Every visible

element in the schema will inherit this capability; there is no need to explicitly

define a sectionBreak attributeType for each visible element.

PageBreak

When PageBreak is set to restricted, the InsertPageBreak command can only be

invoked when the cursor position in the document is on an Empty (Insertion Point)

and the next visible element has a pageBreak attributeType defined (see section

12.3).

When PageBreak is set (or defaults) to unrestricted, the InsertPageBreak command

can be invoked when the cursor position in the document is on an Empty

(Insertion Point) preceding any visible document element. Every visible element in

the schema will inherit this capability; there is no need to explicitly define a

pageBreak attributeType for each visible element.

ColumnBreak

When ColumnBreak is set to restricted, the InsertColumnBreak command can only

be invoked when the cursor position in the document is on an Empty (Insertion

Attribute Definition

value The value that will be assigned to the XML

attribute.

DOCUMENT LEVEL CONFIGURATION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 163

Point) and the next visible element has a columnBreak attributeType defined (see

section 12.3).

When ColumnBreak is set (or defaults) to unrestricted, the InsertColumnBreak

command can be invoked when the cursor position in the document is on an

Empty (Insertion Point) preceding any visible document element. Every visible

element in the schema will inherit this capability; there is no need to explicitly

define a columnBreak attributeType for each visible element.

AllowHeaderFooterEdit

This optional node can contain either true or false, and defaults to false. An

example is shown below:

<AllowHeaderFooterEdit>true</AllowHeaderFooterEdit>

If set to true, document authors can double-click the header/footer regions and

modify content in those regions. Quark XML Author will not impose any

restrictions on the content in these regions; the WordML content is stored in the

document using the CDATA WordSection node.

If set to false (or not specified), Quark XML Author will detect a user’s attempt to

edit the header and footer document region. Quark XML Author will intercept a

double-click event and invoke any EI methods associated with EI event,

“DoubleClickHeaderFooter”, if any. If this event contains no EI method, Quark XML

Author will consume the keystroke.

AllowSoftLinebreaks

This optional node can contain either true or false. Defaults to false. An example is

shown below:

<AllowSoftLinebreaks>true</AllowSoftLinebreaks>

If false, document authors cannot insert soft line breaks (using Shift + Enter) into

any element in the document. If set to true, document authors can insert soft line

breaks in any text element.

Smart Paste

Also when soft line breaks are allowed, clipboard content containing a line break

will introduce a PasteSpecial context menu item within a paragraph element. This

menu option will allow users to preserve line breaks while pasting text in the

document.

Reviewing

The <Reviewing> node is a leaf node with one attribute, modelType, with two

possible values: OneNode or TwoNode. Default value is TwoNode.

When set to OneNode, the two node model of representing Revision and Comment

nodes is converted in the serialized document to a single node model.

DOCUMENT LEVEL CONFIGURATION

164 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

HiddenInsertables

This optional node specifies which empty should be used to calculate insertables

when there are hidden elements (made hidden by the use of ToggleVisibleElement

Internal class)between the visible nodes surrounding the currently selected empty.

Table 9‑6: HiddenInsertables Attributes

Change To Menu

The <ShowChangeToMenu> node allows you to specify whether or not “change to”

menus are displayed for any elements.

Optional. Boolean. Defaults to true.

For information on controlling the display for a specific element type, see

excludeFromChangeToMenu in Table 14‑1.

ShowInsertBeforeMenu

The <ShowInsertBeforeMenu> node allows you to specify whether or not “Insert

Before” menus are displayed in the Context Menu for the current element.

Optional. Boolean. Defaults to true.

Attribute Required Definition

selectionStrategy yes Possible values:

FirstHiddenElement,

LastHiddenElement and

AllHiddenElements.

FirstHiddenElement considers

the empty between current top

visible node and the first

invisible node.

LastHiddenElement considers

the empty between the last

invisible empty and current

bottom visible node.

AllHiddenElements considers

all empties between every

invisible element pairs and

combines them into one

insertable list. Be careful using

the AllHiddenElements setting.

If a large number of items are

hidden, then the list of items

added to the insertables list

may result in a large list whose

usability is low.

DOCUMENT LEVEL CONFIGURATION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 165

Insert Before menus contain the list of insertable elements that the user is allowed

to insert before a given element. The list is the same as if the user right-clicked on

the Insertion Point above the given element.

Figure 9‑1: Example of Insert Before submenu

PasteTrackDeletedText

If set to true, this will enable pasting track deleted text.

Defaults to false

<PasteTrackDeletedText>false</PasteTrackDeletedText>

ShowInsertAfterMenu

The <ShowInsertAfterMenu> node allows you to specify whether or not “Insert

After” menus are displayed in the Context Menu for the current element.

Optional. Boolean. Defaults to true.

Insert After menus contain the list of insertable elements that the user is allowed to

insert after a given element. The list is the same as if the user right-clicked on the

Insertion Point below the given element.

DOCUMENT LEVEL CONFIGURATION

166 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 9‑2: Example of Insert After submenu

EnableFastSave

If set to true, this will enhance save and preview operations by optimizing

serialization, resulting in lowering the amount of time taken in save and preview

operations.

Defaults to False.

<EnableFastSave>true</EnableFastSave>

EnableOpenDocxSupport

To Enable OpenDocx support in Quark XML Author, add the tag

<EnableOpenDocxSupport>true</EnableOpenDocxSupport> in the document

configuration. This is enabled by default in the Quark XML Author adapter for

Platform (BUSDOCS) configuration. This feature is not available in the standalone

version of Quark XML Author as it requires Quark Publishing Platform.

dir

Bidirectional text flow support in Quark XML Author at the document level is

achieved by setting the base text direction for an entire document. This is

accomplished using the dir attribute on the root element. Valid values for the dir

attribute are ltr and rtl (left-to-right and right-to-left). Defaults to ltr.<topic id =”“

xmlns:inv=”urn:xpressauthor:xpressdocument”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xlink=”http://www.w3.org/1999/xlink”

xsi:noNamespaceSchemaLocation=”BUSDOCS.xsd” xml:lang=”ar” dir=”rtl”>

APPLICATION CONFIGURATION: XPRESSUPDATES

QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN GUIDE |

Application Configuration:
XpressUpdates

Overview

Xpress Updates is a mechanism for pushing Quark XML Author software and

configuration updates to existing Quark XML Author clients. Xpress Updates may

update any Quark XML Author file except for the XpressAddIn.dll, including

configuration files, starter documents, and XAS files.

Xpress Updates is loaded when Word is started, but before the Quark XML Author

Add-in is loaded. Xpress Updates checks a manifest document located on a server.

This manifest document contains information about files that are available for

download. If the local files have an earlier timestamp than the available files, the

user is notified that updates are available and prompted to download them. If the

user selects Yes, the files are downloaded and Quark XML Author is loaded. If the

user selects No, Quark XML Author is loaded without the new files being

downloaded.

Note that the user must have write permission to the XML

Author directory. If the user does not have write permission to the XML Author

directory, the update operation will fail.

Xpress Updates does not provide end user control over the update mechanism.

While the user may ignore or cancel an update through the dialog box, the user

may not disable the update mechanism once the administrator has configured it.

Nor may the user enable the update mechanism if the administrator disables it.

XpressUpdate.xml

XpressUpdate.xml is the configuration file for Xpress Updates, and is located in the

XML Author application folder. It should be configured before building the client

installation. Otherwise, the file would need to be copied manually to each client.

The file has the following structure:

<XpressUpdate xmlns="urn:invision:XpressUpdate">

APPLICATION CONFIGURATION: XPRESSUPDATES

168 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 <ManifestLocation></ManifestLocation>
 <Credentials username="" password=""
domain="">Windows</Credentials>
 <LogFile logging="true">XpressUpdateLog.txt</LogFile>
</XpressUpdate>

Each node is defined below.

ManifestLocation: The URL pointing to the manifest file that contains the file

update information.

Credentials: Used during authentication on the update server. If the node contents

specify Windows, the user’s Windows credentials are used. If the node contents

specify Supplied, the values of the username, password, and domain attributes are

used.

LogFile: If set to true, logging is turned on, and the node content specifies the

name of the log file. If set to false, logging is turned off. The log file is located in the

XML Author application folder.

Manifest.xml

Manifest.xml is the document returned by the server, and contains information

about the files that are available to be updated. The file has the following structure:

<XpressUpdateManifest xmlns="urn:invision:XpressUpdateManifest">
 <FileRepository>http://localhost/XpressUpdates</FileRepository>
 <Files>
 <File name="file1" location="" dateTime="1/27/2005 10:33
PM"/>
 <File name="file2" location="" dateTime="1/27/2005 10:33
PM"/>
 </Files>
</XpressUpdateManifest>

The FileRepository node content specifies the location of the files available for

download. Each File node in the Files element specifies the name, location, and

timestamp for one available file. The File node attributes are defined below.

name: The name of the file that is available to be downloaded.

location: The path relative to the client application folder where the file will be

downloaded to. For example, if the file will be downloaded to the \XML

Author\quark\stylesheets directory, this value would be quark\stylesheets. If this

attribute is omitted or left empty, the file is copied to the XML Author application

folder.

dateTime: The timestamp to which current files are compared. If the existing file is

older than the timestamp, it is replaced.

Dialogs

Xpress Updates uses two dialogs to allow the user to monitor update status as well

as cancel updates if necessary. The first dialog informs the user that updates are

being checked. This dialog will only be displayed if more than 3 seconds elapse

APPLICATION CONFIGURATION: XPRESSUPDATES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 169

before the manifest document is returned from the server. The dialog will

automatically close when the manifest is finally retrieved. The user may click the

Cancel button if the retrieval fails or takes too long.

The second dialog displays the files that are being downloaded and their status

(Downloading, Complete, or Error). The dialog remains open until the user clicks

the OK button. The user may click the Cancel button at any time to abort file

downloading.

QUARK XML AUTHOR STRUCTURE OVERVIEW

170 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Quark XML Author Structure
Overview

The Quark XML Author Structure (XAS) is the Quark XML Author equivalent of an

XML schema file, in that it defines the allowed components of a document, and

their relationships to each other. Quark XML Author uses the XAS to provide more

flexibility than would be present with a standard XML Schema Definition (XSD) or

Document Type Definition (DTD). This chapter presents an overview of the XAS

structure. Subsequent chapters will discuss how each component in an XAS is

constructed.

XML Declaration and Processing Instructions

Because the XAS is an XML document, it must begin with an XML declaration, as

shown below:

<?xml version="1.0" encoding="utf-8"?>

Defining Multiple Namespaces

The root element defines the default namespace so that you don’t need to specify it

for each element you define. However, each attribute, emphasis, and element

definition can specify additional namespaces that will override the default

namespace within the documents that are based on the XAS.

Root Element

The root element for the XAS is XpressSchema. Its required attributes are defined in

Table 11‑1.

Table 11‑1: Schema Root Element Attributes and Values

Attribute Value

xmlns:xsi http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation urn:xpressauthor:XpressSchema

../Schemas/XpressSchema.xsd

QUARK XML AUTHOR STRUCTURE OVERVIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 171

External Entities

The DTD ENTITY declaration and entity references can be used to link separate

documents into a single Quark XML Author Schema. The schema validation is still

supported but first all the different entities are combined into one file before

validating it. An example is shown below.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE link [
 <!ENTITY secattributes SYSTEM "SecurityAttributes.xas">
 <!ENTITY emphattributes SYSTEM "EmphasisAttributes.xas">
 <!ENTITY mediaattributes SYSTEM "MediaAttributes.xas">
 <!ENTITY emailattributes SYSTEM
"EmailNotificationAttributes.xas">
 <!ENTITY miscattributes SYSTEM "MiscellaneousAttributes.xas">
 <!ENTITY tableattributes SYSTEM "tableAttributes.xas">
 <!ENTITY topLevelElements SYSTEM "topLevelElements.xas">
 <!ENTITY localMediaElements SYSTEM "LocalMediaElements.xas">
 <!ENTITY slideElements SYSTEM "PowerPointSlideElements.xas">
]>
<XpressSchema xmlns="urn:xpressauthor:xpressschema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
defaultNamespace="urn:us:gov:ic:msp"
xsi:schemaLocation="urn:xpressauthor:xpressschema
../schemas/XpressSchema.xsd">
 &secattributes;
 &emphattributes;
 &mediaattributes;
 &emailattributes;
 &miscattributes;
 &tableattributes;
 <Emphasis>

 </Emphasis>
 <Elements>

 </Elements>
 &localMediaElements;
 &slideElements;
 <Elements>

 </Elements>
 &topLevelElements;
</XpressSchema>

Definition Order

Document components are declared in reverse hierarchical order. That is, the

document’s root node is the last item declared in the document. The root element’s

immediate children are declared just above it, and their children just above them,

and so on, with elements that can contain no other elements declared before any

others. Emphasis styles are referenced by elements, so they are defined above the

element definitions. Both emphasis definitions and element definitions reference

attributes, so attributes comprise the first section of the XAS.

Attributes

Of course, an XML document is composed of more than just elements, and a Quark

XML Author document is no different. Elements have attributes which contain

metadata describing the document and its contents. In the XAS, attributes are

QUARK XML AUTHOR STRUCTURE OVERVIEW

172 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

declared separately from elements, and are then referenced in each element

definition.

Like child elements, attributes must be declared before the element to which they

will be applied. For this reason, Attribute are defined at the beginning of the XAS

Emphasis Styles

The next section of the XAS defines Emphasis styles. Each emphasis style can also

reference attributes, but they, in turn, will be referenced by elements. This section is

therefore located below the Attributes section, but above the Elements sections.

The structure of the file looks like this:

<?xml version="1.0" encoding="UTF-8"?>
 <XpressSchema xmlns="urn:invision:XpressSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"xsi:schemaLocation="urn:invision:XpressSchema
../Schemas/XpressSchema.xsd"
defaultNamespace="urn:invision:enduserdoc">
 <Attributes>
 <!-- Individual attribute definition elements and child
elements -->
 </Attributes>
 <Emphasis>
 <!-- Individual emphasis definition elements and child
elements -->
 </Emphasis>
 <Elements>
 <!-- Individual element definition elements and child
elements -->
 </Elements>
 </XpressSchema>

Elements

Figure 11‑1 shows a simple element structure.

Figure 11‑1: Simple Element Structure

In defining the RevisionHistory element and the elements that make up its

structure, the first item defined would be RevisionRemark. Next, Revision would be

defined, and would reference RevisionRemark as a required child element, and

specify how many are permitted. Finally, RevisionHistory would conclude the

definition, and would reference Revision as a required child element, and specify

how many are permitted.

Comment Lines

It can be helpful to isolate the various elements and attributes that will be used

according to category. This makes it easier to read the XAS later, and can help

prevent difficulties such as declaring components in the wrong order. Doing this is

not required, nor is there a “right” way to do it. However, the following

categorization method has been shown to be very useful:

QUARK XML AUTHOR STRUCTURE OVERVIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 173

Attributes. Metadata attributes for elements and emphasis styles are defined •

first. Elements and emphasis styles may share attributes.

Emphasis. Each type of emphasis is declared and defined. If you have a complex •

set of Emphasis requirements, you may want to break this section down further.

Miscellaneous Elements. These are all of the elements other than list, table, and •

media elements that can be contained by top-level elements.

List Elements. This section will contain any element that can be a part of a list •

but cannot be a child of any other element type.

Table Elements. This section will contain any element that a Table element •

comprises.

Media Elements. This section will contain any element that relates specifically •

to media elements.

Container Elements. Elements that can contain almost every other type of •

document component, but can themselves also be contained by top-level

elements, are placed in this section. For example, sections and subsections of a

chapter might be defined here.

Top-Level Elements. The elements which are container elements for the rest of •

the elements in the document class, but are themselves children to the root

element, are declared here, followed by the root element itself.

A file using this method of categorization might look like the one shown below.

<?xml version="1.0" encoding="UTF-8"?>
<XpressSchema xmlns="urn:invision:XpressSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"xsi:schemaLocation="urn:invision:XpressSchema
../Schemas/XpressSchema.xsd"
defaultNamespace="urn:invision:enduserdoc">
 <Attributes>
 <!-- Element Attributes -->
 </Attributes>
 <Emphasis>
 <!-- Emphasis Styles -->
 </Emphasis>
 <Elements>
 <!-- Miscellaneous Elements -->
 <!-- List Elements -->
 <!-- Table Elements -->
 <!-- Media Elements -->
 <!-- Container Elements -->
 <!-- Top-Level Elements -->
 </Elements>
</XpressSchema>

Attribute Groups

XpressSchema.xsd identifies two attribute groups which can be associated with an

element by reference, obviating the need to define each attribute separately. These

groups are common attributes and field attributes. Attributes belonging to each of

these groups are defined below.

Note that these are not the only attributes that may be used, and at times, an

attribute from a group might be applied separately to an element. The particular

QUARK XML AUTHOR STRUCTURE OVERVIEW

174 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

attributes that may be applied to each element are identified in the Attribute

Definition Elements section below.

Common Attributes

Common attributes serve to identify the elements in the schema.

Table 11‑2: Common Attributes

Field Attributes

Table 11‑3: Field Attributes

Attribute Description Example

name Specifies the name of the

attribute definition.

<AttributeDef

name="section001">

namespace Specifies the namespace to use

for the element, and overrides

the default namespace. This

allows the use of multiple

schemas in a single document.

<AttributeDef

name="section01"

namespace="sidebar">

prefix If the namespace attribute is

used, it must be accompanied

by this attribute, which will

append the specified prefix to

the element name in the

output XML, associating the

element with the overriding

namespace.

<AttributeDef

name="MediaReference"

namespace="urn:invision:

msp-extensions"

prefix="inv"

xmlname Specifies the name that will be

used as the element name in

the XML file. Used to allow an

attribute to have distinct

enumerated values depending

on which element it is

associated with. Create a

separate AttributeDef for each

attribute instance and assign

the same xmlname value to

each one.

<AttributeDef

name="section01"

xmlname="section">

Attribute Description Example

attrGroupName Specifies the name of the tab in

the attribute panel on which

the attribute being defined will

appear.

<AttributeDef

name="pubdate"

datatype="datetime"

format="MMDDYYYY"

QUARK XML AUTHOR STRUCTURE OVERVIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 175

Attribute Description Example

friendly="Publication

Date"

attrGroupName="Publicati

on Information"/>

datatype Specifies the type of data to be

supplied. Possible values are

combobox, datetime,

droplist, imageheight,

imagewidth, imageheightdpi,

imagewidthdpi, multiline,

string, time, uniqueidentifier,

columnBreak, pageBreak, and

sectionBreak.

See Table 11‑4 for descriptions

of these datatypes.

See Table 11‑5 for descriptions

of table specific datatypes.

Default is string.

<AttributeDef name="id"

datatype="uniqueidentifi

er"/>

default Specifies a default value for the

attribute being defined.

<AttributeDef

name="securClassif"

friendly="Security

Classification"

attrGroupName="Releasabi

lity" default="TS"/>

displayPattern Used in the error message

displayed to inform the user

that the data entered does not

match the pattern.

externalMethodId Specifies an externalMethodId

that provides a string that XML

Author will used to populate

an attribute’s combo box list in

the Attributes Panel.

<AttributeDef

name="author"

friendly="Author Name"

externalMethodId="TechPu

bsStaff"/>

fixed Assign the fixed attribute to a

AttributeType for an element

definition to uniquely identify

the element among sibling

elements that have identical

xmlname values. The value of

fixed is a string that is unique

within the collection of sibling

In this example, both

ElementDefs define elements

that are siblings. Both will be

present in the XML document

as <chapter> nodes, but the

chapterType attribute for

those nodes will be set

according to the fixed

QUARK XML AUTHOR STRUCTURE OVERVIEW

176 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Attribute Description Example

element definitions. attribute. This allows sibling

elements with the same XML

name to have entirely different

structure definitions.

<ElementDef

name="instruction"

friendly="Instructional

Chapter"

xmlname="chapter">

 <Sequence>

 <!-- Sequence

definition information -

->

 </Sequence>

 <Attributes>

 <AttributeType

name="chapterType"

visible="true"

fixed="instruct"/>

 <!-- Other

AttributeTypes -->

 </Attributes>

</ElementDef>

<ElementDef

name="concept"

friendly="Conceptual

Chapter"

xmlname="chapter">

 <Sequence>

 <!-- Sequence

definition information -

->

 </Sequence>

 <Attributes>

 <AttributeType

name="chapterType"

visible="true"

fixed="concept"/>

 <!-- Other

QUARK XML AUTHOR STRUCTURE OVERVIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 177

Attribute Description Example

AttributeTypes -->

 </Attributes>

</ElementDef>

Also see Field Attributes – fixed

example.

format Specifies a format for the data

to be supplied. For example,

MMDDYYYY represents a date

field that is specified as Month,

Day, and Year.

See “Valid date formats” more

a list of valid date formats.

<AttributeDef

name="pubdate"

datatype="datetime"

format="MMDDYYYY"/>

friendly Specifies a user-friendly name

for the attribute that will be

displayed to the user in the

attribute panel.

<AttributeDef

name="pubdate"

datatype="datetime"

format="MMDDYYYY"

friendly="Publication

Date"/>

keepWithNext Boolean. Defaults to false.

When set to true, creates an

attribute that, when present on

an ElementDef, indicates that

the element may be toggled so

that it will break across a new

page with the element that

follows it. For example,

consider this AttributeDef:

<AttributeDef name=”keep-

with-next” friendly=”Keep

with Next”

keepWithNext=”true”

visible=”false/>

Any ElementDef that includes

the keep-with-next attribute

defined above could be toggled

to mimic Word’s “Keep with

Next” paragraph behavior.

This feature does not support

images. For tables, this feature

supports table rows only.

QUARK XML AUTHOR STRUCTURE OVERVIEW

178 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Attribute Description Example

pattern When specified, selecting OK

in the Attribute Panel validates

the field against the pattern. If

the attribute is required, the

validation error will also be

triggered if the field is null.

readonly Specifies whether the value of

the attribute will be read-only.

Defaults to false.

<AttributeDef

name="documentType"

default="Memo"

readonly="true"/>

required Specifies whether the attribute

value is mandatory. Defaults to

false.

<AttributeDef

name="author"

required="true"/>

visible Specifies whether the attribute

will be visible in the Attribute

Panel. Defaults to true.

<AttributeDef

name="documentType"

default="Memo"

visible="false"/>

widowControl Boolean. Defaults to false.

When set to true, creates an

attribute that, when present on

an ElementDef, indicates that

the element may be toggled so

that it will allow widowed and

orphaned text to be left at the

bottom and tops of pages,

respectively. For example,

consider this AttributeDef:

<AttributeDef name=”widow-

control” friendly=”Widow

Orphan control”

default=”true”

widowControl=”true”

readonly=”true”

visible=”false”/>

Any ElementDef that includes

the widow-control attribute

defined above could be toggled

to mimic Word’s

“Widow/Orphan Control”

paragraph behavior.

dir Specifies the text direction in

an element or document.

QUARK XML AUTHOR STRUCTURE OVERVIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 179

Valid date formats

The following link provides a list of valid date formats

Field Attributes – fixed example

This is an additional example to accompany the definition of the fixed attribute. See

Table 11‑3: Field Attribute

If the schema has <p/> defined three different ways, one is text-only, one is

children-only (no text), and one is mixed (allows text and children). Quark XML

Author must be able to differentiate within the configuration between the elements

in order to work with documents containing structures like the following.

 <p> I’m a text only para</p>
 <p>
 <child>
 <child>
 <child>
 </p>
 <p> I can have text and children
 <child>
 </p>

The following shows how those elements would be configured:

 <AttributeDef name="para_type" visible="false"
readonly="true"/>

 <ElementDef xmlname="p" name="p_text_only" friendly="Text
Paragraph" />
 <Attributes>
 <AttributeType name="para_type" fixed="textOnly"/>
 </Attributes>
 </ElementDef>
 <ElementDef xmlname="p" name="p_children_only"
friendly="Paragraph Section" />
 <Attributes>
 <AttributeType name="para_type" fixed="childrenOnly"/>
 </Attributes>
 </ElementDef>
 <ElementDef xmlname="p" name="p_mixed" friendly="Paragraph" />
 <Attributes>
 <AttributeType name="para_type" fixed="mixed"/>
 </Attributes>
 </ElementDef>

The following content example shows the three para elements in use:

 <p para_type="textOnly"> I’m a text only para</p>
 <p para_type="childrenOnly">
 <child>

Attribute Description Example

Defaults to ltr (left to right).

http://msdn.microsoft.com/en-us/library/system.windows.forms.datetimepicker.customformat%28v=vs.110%29.aspx

QUARK XML AUTHOR STRUCTURE OVERVIEW

180 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 <child>
 <child>
 </p>
 <p para_type="mixed"> I can have text and children
 <child>
 </p>

Table 11‑4: Field Attributes – datatype values

datatype Description Example

columnBreak Set an AttributeDef’s datatype

to columnBreak to indicate a

Column Break attribute.

See section 9.7 for information

on DocConfig settings. See

section 12.3 for information

about creating and using break

attributes.

datetime This attribute stores the date

and time.

droplist droplist lets users select from a

list of values populated from

values specified in the schema.

imageheight, imagewidth,

imageheightdpi,

imagewidthdpi

In general, these attributes are

set when an image is inserted,

refreshed, or resized. When a

document is opened, if these

attributes do not exist then

they are added and they are set

using the values retrieved from

the image file. When an image

is inserted, these attributes are

added and they are set using

the values retrieved from the

image file. In those two

scenarios, if the system

determines that the image size

is larger than the area available

on the Word canvas, then the

system will reduce the size of

image to fit while maintaining

the aspect ratio. These

attributes are set when the user

manually alters the size of the

image on the Word canvas.

The user may set the size to be

larger than the area available

on the Word canvas.

imageheight and imagewidth

values are in pixels.

multiline multiline indicates that the

QUARK XML AUTHOR STRUCTURE OVERVIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 181

Table 11‑5: Field Attributes – datatype values for table elements

The following datatypes can be applied to all table elements and be inherited in the

order of Table > Group > Section > Row | Column > Cell (meaning that the cell

inherits from the Column only if it is explicitly defined on the Column and not on

the Row).

datatype Description Example

textbox for the attribute will

have three lines, will support

carriage returns, and display a

tooltip showing the entire

value of the attribute when the

mouse hovers over it.

pageBreak Set an AttributeDef’s datatype

to pageBreak to indicate a

Page Break attribute.

See section 9.7 for information

on DocConfig settings. See

section 12.3 for information

about creating and using break

attributes.

sectionBreak Set an AttributeDef’s datatype

to sectionBreak to indicate a

Section Break attribute.

See section 9.7 for information

on DocConfig settings. See

section 12.3 for information

about creating and using break

attributes.

string A simple string. This is the

default datatype.

time This attribute stores the time.

uniqueidentifier If the value is

uniqueidentifier, a GUID will

be generated as the value of

the attribute.

directionAttribute Allows support for direction

attributes for elements.

<AttributeDef name="dir"

datatype="directionAttri

bute" visible="false"/>

Datatype Description Example

tableBorderBottomStyle Set to 1 to style the bottom <AttributeDef

QUARK XML AUTHOR STRUCTURE OVERVIEW

182 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Datatype Description Example

border using the style specified

in the Table Style. Set to 0 to

use no styling. Note that if

rowBorderStyle is set to None,

then setting

tableBorderBottomStyle to 1

will have no effect. Styling is

not applied. This applies to the

bottom border of the table

element, not including the

table frame.

name="rowsep"

datatype="tableBorderBot

tomStyle"

friendly="Border Style -

bottom"

visible="false"/>

tableBorderRightStyle Specifies the right border of the

table element, not including

the table frame.

<AttributeDef

name="colsep"

datatype="tableBorderRig

htStyle"

friendly="Border Style -

right" visible="false"/>

tableAlignmentHorizontal Specifies the horizontal

alignment of the content.

<AttributeDef

name="align"

datatype="tableAlignment

Horizontal" friendly=""

visible="false"

default="left">

 <Restriction>

 <Enumeration

value="left"/>

 <Enumeration

value="right"/>

 <Enumeration

value="center"/>

 <Enumeration

value="just"/>

 </Restriction>

</AttributeDef>

tableAlignmentVertical Specifies the vertical alignment

of the content.

<AttributeDef

name="valign"

datatype="tableAlignment

Vertical" friendly=""

visible="false"

default="top">

 <Restriction>

 <Enumeration

value="top"/>

QUARK XML AUTHOR STRUCTURE OVERVIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 183

Table 11‑6: Field Attributes – datatype values for tables

Table-level datatypes.

Table 11‑7: Field Attributes –datatype values for table rows/columns

Datatype Description Example

 <Enumeration

value="middle"/>

 <Enumeration

value="bottom"/>

 </Restriction>

</AttributeDef>

Datatype Description Example

tableFrame Specifies the border of the

table, not including cells.

<AttributeDef

name="frame"

datatype="tableFrame"

friendly="Table Frame

Borders" visible="false"

default="all">

 <Restriction>

 <Enumeration

value="all"/>

 <Enumeration

value="top"/>

 <Enumeration

value="bottom"/>

 <Enumeration

value="topbot"/>

 <Enumeration

value="sides"/>

 <Enumeration

value="none"/>

 </Restriction>

</AttributeDef>

tableRowColumnIndex Specifies the index of the

row/column that contains the

cell. Required for merged cells

in CALS tables.

<AttributeDef

name="colnum"

datatype="tableRowColumn

Index" friendly=""

visible="false"/>

QUARK XML AUTHOR STRUCTURE OVERVIEW

184 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Table 11‑8: Field Attributes – datatype values for table cells

tableRowColumnIdentifier The name or identifier of the

row/column that contains the

cell. Required for merged cells

in CALS tables.

<AttributeDef

name="colname"

datatype="tableRowColumn

Identifier" friendly=""

visible="false"/>

Datatype Description Example

tableCellColumnStart For a merged cell, specifies the

column in which the cell

starts. Used to facilitate CALS

namest.

<AttributeDef

name="namest"

datatype="tableCellColum

nStart" friendly=""

visible="false"/>

tableCellColumnEnd For a merged cell, specifies the

column in which the cell ends.

Used to facilitate CALS

nameend.

<AttributeDef

name="nameend"

datatype="tableCellColum

nEnd" friendly=""

visible="false"/>

tableCellColumnCount For a merged cell, specifies the

number of columns the cell

spans. Used to facilitate HTML

colspan and horizontal merge.

<AttributeDef

name="namecount"

datatype="tableCellColum

nCount" friendly=""

visible="false"/>

tableCellRowCount Specifies the number of

additional rows in the merge

(equals total rows minus one).

Required for vertically merged

cells in CALS tables.

<AttributeDef

name="cellrowcount"

datatype="tableCellRowCo

unt" friendly=""

visible="false"/>

tableCellContentRotate Specifies that the content of

the cell should be rotated.

<AttributeDef

name="rotate"

datatype="tableCellConte

ntRotate" friendly=""

visible="false"/>

tableCellBackgroundColor Specifies the background color

(hex RGB) of the cell. To

display a specific set of color

<AttributeDef

name="bkgndcolor"

datatype="tableCellBackg

QUARK XML AUTHOR STRUCTURE OVERVIEW

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 185

Table 11‑9: Field Attributes – datatype values for table, group, section

Datatype Description Example

choices to the user, use

Restriction Enumerations.

Otherwise, the user interface

displays Word’s stock colors for

cell shading.

roundColor" friendly=""

visible="false"

 >

 <Restriction>

 <Enumeration

value="F0F8FF "/>

 <Enumeration

value="FAEBD7"/>

 </Restriction>

</AttributeDef>

tableCellRowSpan Specifies the total number of

rows in the merge. Required

for vertically merged cells in

HTML tables. Used to facilitate

HTML rowspan.

<AttributeDef

name="rowspan"

datatype="tableCellRowSp

an" visible="false"/>

tableCellMoreRows Specifies the number of

additional rows in the merge

(equals total rows minus one).

Required for vertically merged

cells in CALS tables. Used to

facilitate CALS morerows.

Behaves identically to the

deprecated

tableCellRowCount. It is added

for clarity for the engineer

implementing CALS. The

current value of

tableCellRowCount is

preserved for backward

compatibility despite the

misleading name.

<AttributeDef

name="morerows"

datatype="tableCellMoreR

ows" visible="false"/>

Datatype Description Example

tableColumnCount For a table or table group,

specifies the number of

columns it contains.

<AttributeDef

name="cols"

datatype="tableColumnCou

nt" friendly=""

visible="false"/>

tableColumnWidth Specifies the width of the <AttributeDef

QUARK XML AUTHOR STRUCTURE OVERVIEW

186 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Datatype Description Example

column. Required for merged

cells in CALS tables. Required

to allow the width of columns

to be modified. See “Column

Widths” for details.

name="colwidth"

datatype="tableColumnWid

th" friendly=""

visible="false"/>

tableRowCount For a table, table group or table

section, specifies the number

of rows it contains. Specifies

the height of the row. Required

to allow the height of the rows

to be modified.

<AttributeDef

name="rows"

datatype="tableRowCount"

friendly=""

visible="false"/>

tableRowHeight Specifies the height of the row.

Required to allow the height of

rows to be modified.

<AttributeDef

name="rowHeight"

xmlname="height"

datatype="tableRowHeight

" visible="false"/>

tableStyle Specifies the name of the style

of the table. For tables or

groups only.

<AttributeDef

name="tgroupstyle"

datatype="tableStyle"

friendly=""

visible="false"/>

QUARK XML AUTHOR STRUCTURE ATTRIBUTE DEFINITION

QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN GUIDE |

Quark XML Author Structure
Attribute Definition

Each element that makes up the attribute definition section of the schema is

defined below. An example is provided with each to demonstrate proper syntax for

the element’s use.

The Attributes element contains the collection of attribute definition elements for

the schema, and is a direct child of the XpressSchema root element. It uses no

attributes.

<Attributes>
 <AttributeDef name="id" visible="false"/>
 <!-- Additional AttributeDef elements here -->
</Attributes>

AttributeDef

AttributeDef defines a single attribute for the schema. It may use the Restriction

child element to specify a restricted list of values from which the user must choose

when populating the attribute.

AttributeDef may use any of the attributes defined in the Common Attributes and

Field Attributes groups, as well as the optional attributes defined below.

Table 12‑1: AttributeDef Attributes

Restriction

Restriction is used as a child of the AttributeDef element to restrict the user to a pre-

determined list of values that may be used to populate the defined attribute. Each

possible value is defined in an Enumeration child element. Restriction has no

attributes, but must have one or more Enumeration children.

<AttributeDef name="filter" friendly="Filter" default="publish">
 <Restriction>
 <Enumeration value="publish"/>
 <Enumeration value="supress"/>
 </Restriction>
</AttributeDef>

Attribute Required Definition

contextId no A dash-delimited list of rule

IDs in a validation

configuration file.

QUARK XML AUTHOR STRUCTURE ATTRIBUTE DEFINITION

188 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Enumeration

Enumeration defines a single value that may be used to populate the defined

attribute. Enumeration has one required attribute: value. This attribute is a string

representing the value that may be selected by the user to populate the defined

attribute

Using uniqueidentifier

Quark XML Author supports attribute definitions with datatype=”uniqueidentifier”

for automatically assigning a GUID value. When used without the format attribute,

the attribute is populated in the format: id=” 982x0d0c-1446-4b39-a704-

646d549b50b3”. The xsd:ID datatype requires the value to begin with an alpha

character. To comply with this requirement, use datatype=”uniqueidentifier” in

conjunction with the format attribute. The value of the format attribute will be

prepended to the GUID. For example:

<AttributeDef name="id" datatype="uniqueidentifier" format="id-"

required="true"/>

The preceding example would produce a value in the format id=” id-982x0d0c-

1446-4b39-a704-646d549b50b3”.

Associating Attribute Definitions with Elements and Emphasis

Both element definitions (section 14) and emphasis definitions (section 13) can

have attributes associated with them. The ElementDef and EmphasisDef elements

each have an optional child element called Attributes. The Attributes element

contains an AttributeType element for each attribute that is associated with the

element or emphasis. The AttributeType element’s name attribute contains the

name of an AttributeDef defined earlier in the schema. The AttributeType element

can have any of the Field Attributes defined in section 11.6.2. An example is shown

below.

<Attributes>
 <AttributeType name="author"/>
 <AttributeType name="copyright"/>
 <AttributeType name="name"/>
 <AttributeType name="editor"/>
 <AttributeType name="keywords"/>
 <AttributeType name="status"/>
 <AttributeType name="id"/>
 <AttributeType name="revisionflag"/>
</Attributes>

SectionBreak, PageBreak, and ColumnBreak Attributes

To specify whether or not a given element may be preceded by a section, page

break, or column break, you must define an attribute with the datatype value

sectionBreak, pageBreak, or columnBreak. For example:

<AttributeDef name="sectionBreak" datatype="sectionBreak"
readonly="true" visible="false"/>

<AttributeDef name="pageBreak" datatype="pageBreak "
readonly="true" visible="false"/>

QUARK XML AUTHOR STRUCTURE ATTRIBUTE DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 189

<AttributeDef name="columnBreak" datatype="columnBreak "
readonly="true" visible="false"/>

You would then associate one or more of these attributes with that specific element.

Information about associating AttributeDefs with elements is found in section 12.2.

Finally, you would set the value of the SectionBreak, PageBreak, ColumnBreak node

in the DocConfig to restricted. See section 9.7 for information about these

DocConfig nodes.

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

190 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Quark XML Author Structure
Emphasis Definition

Each element that makes up the emphasis definition section of the schema is

defined below.

The Emphasis element contains the collection of emphasis definition elements for

the schema, and is a direct child of the XpressSchema root element. It uses no

attributes.

EmphasisDef

EmphasisDef defines a single emphasis style that may be associated with text

elements in the schema. Its Style child element defines the actual appearance of the

emphasis within the document. EmphasisDef may use any of the attributes defined

in the commonAttributes group. It may also use the attributes defined below.

Table 13‑1: EmphasisDef Attributes

Attribute Name Required Definition

contextId no A dash-delimited list of rule

IDs in a validation

configuration file.

excludeFromEmphasisCombo no Defaults to false. When set to

true, the emphasis is not

visible in the drop-down box.

friendly no Specifies a name for the

emphasis style to be presented

to the user within the

interface, instead of the

emphasis element name

preserveSpace no Defaults to false. When set to

true, the emphasis will include

any trailing space/non-

breaking-spaces that are part of

the selection. For example, the

trailing space/non-breaking-

space that is selected when a

user double-clicks on a word.

readonly no Defaults to false. If set to true,

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 191

Specialized

Many features of Quark XML Author, such as footnotes, end notes, and cross

reference links, are implemented as emphasis. The <Specialized> node is used to

define enhanced emphasis functionality.

The specialized node’s child elements define the emphasis behavior. These are

<Footnote>, <Endnote>, <Link>, <Entity>, and <ProcessingInstruction>.

Footnote

Use the <Footnote> element to establish presentation options for document

footnotes.

Table 13‑2: Footnote Attributes

Attribute Name Required Definition

the textnode of a readonly

emphasis may not be changed.

The emphasis can be deleted if

its parent container is editable.

Emphasis may not be nested

within a readonly emphasis.

selectOnFocus no Defaults to false. When set to

true, Quark XML Author will

auto-select the entire emphasis

when the user clicks or selects

within the emphasis region. If

the user selects a range that

includes but extends outside

the emphasis, Quark XML

Author does not perform the

auto-selection. This allows the

user to select and over-type the

emphasized text (assuming

that inv:required is not true).

tooltipTransform no Defines the path to an XSLT

file used to define the text

displayed when the user hovers

over the emphasized text.

Attribute Name Required Definition

allowedNumberingSchemes Used for footnote emphasis.

Specifies the allowed

numbering formats that can be

used for note items. If more

than one is allowed, they are

separated by spaces. Possible

values are:

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

192 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

The sample below shows one possible Footnote configuration.

<EmphasisDef name="fn" friendly="Footnote">
 <Specialized>
 <Footnote footnoteLocation="page"
allowedNumberingSchemes="smallRoman" captionAttribute="callout"/>
 </Specialized>
 <Style superscript="true"/>
 <Attributes>
 <AttributeType name="callout"/>
 </Attributes>
 <Emphasis/>
</EmphasisDef>

Endnote

Use the <Endnote> element to establish presentation options for document

endnotes and tablenotes. Endnotes are generalized to facilitate notes that are placed

at the end of a content element. Therefore, endnote is used to facilitate tablenote.

Table 13‑3: Endnote Attributes

Attribute Name Required Definition

arabic •

bigAlpha •

smallAlpha •

bigRoman •

smallRoman•

captionAttribute no Specifies the name of the

EmphasisDef attribute that will

contain the value of a custom

mark assigned by the author at

runtime.

disableCustomMarkTextbox no Boolean. Set to true if the

Custom Mark option should be

disabled in the Footnote

Options dialog. Defaults to

false.

footnoteLocation yes Determines where footnotes

will be placed in the rendered

document. Valid values are

document, page, section, and

text.

Attribute Name Required Definition

allowedNumberingSchemes Used for endnote and tablenote

emphasis. Specifies the allowed

numbering formats that can be used

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 193

The implementation of a endnote is different from footnote in that endnote

requires an additional element for storage and placement of the note.

The following sample configuration fragments show one possible tablenote

configuration. Critical components are highlighted.

<!-
-
- - - - -->
<ElementDef name="Tablenote" visible="false">
 <Endnote/>
</ElementDef>
<!--
- - - - - - - - - - - for storage and placement of the tablenote
- -->
<ElementDef name="entry" friendly="Cell" allowCut="false"
allowRemove="false">
 <Section>
 <Para defaultHyperlink="xref@format='html'">
 <Emphasis>
 <EmphasisType name="b"/>
 <EmphasisType name="i"/>
 <EmphasisType name="u"/>
 <EmphasisType name="sup"/>
 <EmphasisType name="sub"/>
 <EmphasisType name="term"/>
 <EmphasisType name="xref"/>
 <EmphasisType name="q"/>
 <EmphasisType name="keyword"/>
 <EmphasisType name="tm"/>
 <EmphasisType name="tn"/>
 <EmphasisType name="fontColor"/>
 <EmphasisType name="fontSize"/>

Attribute Name Required Definition

for note items. If more than one is

allowed, they are separated by

spaces. Possible values are:

arabic •

bigAlpha •

smallAlpha •

bigRoman •

smallRoman•

captionAttribute no Specifies the name of the

EmphasisDef attribute that will

contain the value of a custom mark

assigned by the author at runtime.

disableCustomMarkTextbox no Boolean. Set to true if the Custom

Mark option should be disabled in

the End note Options dialog.

Defaults to false.

endnoteElementDef Specifies the name of the endnote

element definition.

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

194 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 </Emphasis>
 </Para>
 </Section>
</ElementDef>
<!--
-
- - - -->
<ElementDef name="table" friendly="Table" visible="false">
 <Section>
 <Sequence minOccurs="0">
 <SectionType name="title" friendly="Table Title"/>
 </Sequence>
 <Sequence>
 <SectionType name="tgroup"/>
 </Sequence>
 <Sequence>
 <!-- minOccurs = 0 and maxOccurs=1 always for a EndnoteType
element -->
 <!-- Furthermore there can only be one reference of a
particular EndNoteType element in the entire schema-->
 <EndnoteType name="Tablenote"/>
 </Sequence>
 <Sequence minOccurs="0">
 <SectionType name="desc" friendly="Table Caption"/>
 </Sequence>
 </Section>
 <Attributes>
 <AttributeType name="id"/>
 <AttributeType name="conref"/>
 <AttributeType name="frame"/>
 <!--
 <AttributeType name="rowsep"/>
 <AttributeType name="colsep"/>
-->
 </Attributes>
</ElementDef>
<!--
-
- - - -->
<EmphasisDef name="tn" friendly="Tablenote" >
 <Specialized>
 <Endnote endnoteElementDef="Tablenote"
allowedNumberingSchemes="arabic" captionAttribute="callout"
disableCustomMarkTextbox="true"/>
 </Specialized>
 <Style superscript="true"/>
 <Attributes>
 <AttributeType name="callout"/>
 <AttributeType name="class"/>
 <AttributeType name="outputclass"/>
 </Attributes>
 <!— The Formatting attributes gives the ability to apply
formatting attributes to a Tablenote

 <Formatting>
 <FormattingType name="b"/>
 <FormattingType name="i"/>
 <FormattingType name="u"/>
 <FormattingType name="strikethrough"/>
 <FormattingType name="sub"/>
 <FormattingType name="sup"/>
 <FormattingType name="color"/>
 <FormattingType name="highlight"/>
 </Formatting>
</EmphasisDef>

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 195

Link

Use the <Link> node to define the behavior of hyperlink emphasis. Hyperlinks can

be defined as <Internal> (target is within the document), <External> (target is

another document or a URL), or both, via <Multiple>. The <Link> node may also

use the <Custom> node to indicate that the link creation and navigation behavior

will be handled by an external application.

External

Use the <External> node to indicate a hyperlink to an external target, such as a

different document, a component within a different document, or a URL. The

<External> node can be used as a direct child of <Link> or it can be used as a child

of <Multiple> when a combination of internal and external links is desired.

When used as a child of <Multiple>, the substyle attribute is required. The value of

the substyle attribute specifies the name of a substyle, defined in the <SubStyles>

node of the <EmphasisDef>, that defines the appearance of the external link.

When used as a child of <Link>, the appearance of the link is specified by the

<Style> node.

Table 13‑4: External Attributes

Internal

Use the <Internal> node to indicate a hyperlink to an internal target, such as a

component within the document. One or more child <Target> nodes define the

elements that may be link targets.

The configuration attribute specifies the file which contains the Link Management

configuration. Typically, this is the DocConfig file for the document class.

When used as a child of <Multiple>, the substyle attribute is required. The value of

the substyle attribute specifies the name of a substyle, defined in the <SubStyles>

node of the <EmphasisDef>, that defines the appearance of the external link.

When used as a child of <Link>, the appearance of the link is specified by the

<Style> node.

Table 13‑5: Internal Attributes

Attribute Name Definition

substyle Required when used as a child of <Multiple>.

Specifies the name of the substyle that defines

the appearance of the external link.

Attribute Name Definition

configuration Points to the file that contains the Link

Management configuration. Typically, this is

the DocConfig file for the document class.

substyle Required when used as a child of <Multiple>.

Specifies the name of the substyle that defines

the appearance of the external link.

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

196 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

The <Internal> node can be used as a direct child of <Link> or it can be used as a

child of <Multiple> when a combination of internal and external links is desired.

Target

The <Target> element is used to define an element that may be the target of an

Internal hyperlink. Each target type is defined by a separate <Target> element; the

<Internal> node contains one or more of them.

Table 13‑6: Target Attributes

Custom

Use the <Custom> node to indicate that the link creation and behavior will be

handled by an external application.

When used as a child of <Multiple>, the substyle attribute is required. The value of

the substyle attribute specifies the name of a substyle, defined in the <SubStyles>

node of the <EmphasisDef>, that defines the appearance of the external link.

When used as a child of <Link>, the appearance of the link is specified by the

<Style> node.

Table 13‑7: Custom Attributes

Multiple

Use the <Multiple> node to wrap a combination of External, Internal, or Custom

nodes.

Attribute Name Definition

definition The name of the <ElementDef> of the target

element. This value is the value of the name

attribute, not the xmlname of the element.

link The name of the <ElementDef> attribute that

supplies the target ID.

xpath Deprecated. Formerly specified the XPath

pointer to a document location.

Attribute Name Definition

assembly The name of the external assembly that handles

the link.

class The name of the external class that handles the

link. The assembly and class must implement

the

Invision.Xpress.Interfaces.EmphasisInterfaces.I

CustomLink interface.

substyle Required when used as a child of <Multiple>.

Specifies the name of the substyle that defines

the appearance of the custom link.

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 197

Entity

This emphasis type is used to tag a content entity in the document. Any content

entity that is tagged by this emphasis will maintain a synchronous mapping with

the entity node in the document.

Adding this definition to the schema implies that every text XML entity

encountered in the parent para type element under which this emphasis is defined

will be wrapped by this emphasis element. Without defining this emphasis, any

encountered text entities will be converted to their literal values and rendered on

the canvas. They will be serialized as literal text. Use the <Entity> element to

establish presentation options for content entities. Its child elements define its

behavior.

Internal content entities defined within the document may be added, modified or

deleted. External content entities (public and private) defined outside of the

document may not be added, modified or deleted.

1. Wrapper

This is used for backward compatibility to allow for metadata-based (attributes)

entity support. With this approach, an entity can be associated with metadata

which will persist in the serialized document. This metadata among other things

can be used to control whether an entity can be edited/deleted (using

attributeName/attributeValue pairs) from the Modify/Delete children.

Add

Specifies whether an entity can be added through the UI. Set its allow attribute to

true to allow the entity to be added, false to prevent.

Modify

If allow attribute is set to true, or an entity reference wrapper element has

attributeName equal attributeValue, the instance value may be modified through

the UI.

Table 13‑8: Modify Attributes

Delete

Attribute Name Required Definition

allow no Boolean. Set to true if the

content entity can be

modified. Set to false if the

content entity may not be

modified. Defaults to true.

attributeName no Name of the attribute which

specifies whether the entity

can be modified.

attributeValue no Value of the attribute which

specifies whether the entity

can be modified.

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

198 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

If an entity reference wrapper element has attributeName equal attributeValue, the

instance value may be deleted through the UI. If allow attribute is set to true, the

entity definition may be deleted, provided there are no entity references.

Table 13‑9: Delete Attributes

1. UserDefined

This is used to support a more generic entity scenario where metadata and wrapper

emphasis are not preserved. During serialization, the emphasis element wrapper will

be dropped and only the original entity will be written.

Table 13‑10: UserDefined Attributes

Attribute Name Required Definition

Allow no Boolean. Set to true if the

content entity can be deleted.

Set to false if the content

entity may not be deleted.

Defaults to true.

attributeName no Name of the attribute which

specifies whether the entity

can be deleted.

attributeValue no Value of the attribute which

specifies whether the entity

can be deleted

Attribute Name Required Definition

allowAdd no Boolean. Specifies whether a

new Internal entity definition

can be added to the current

document. Defaults to true.

allowDelete no Boolean. Specifies whether an

entity definition can be

deleted. An entity definition

can be deleted only if there are

no entity references within the

document. This attribute is

irrelevant for external entities.

Quark XML Author will not

delete external entity

definitions. Defaults to true.

allowModify no Boolean. Specifies whether an

entity definition’s value can be

modified. This attribute is not

relevant for external entities.

Quark XML Author will not

modify external entity

definitions. Defaults to true.

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 199

ProcessingInstruction

This emphasis type is used to tag a processing instruction in the document. This

emphasis is required to be defined to preserve any existing processing instructions

in the document otherwise they will be dropped from document.

If Quark XML Author encounters an XML processing instruction in a document, it

will temporarily apply a special emphasis to that processing instruction. This

emphasis is read-only to prevent any changes to the processing instruction. The

emphasis provides a visual indicator to differentiate a processing instruction from

surrounding narrative text. When the document is saved, the special emphasis is

removed. This returns the processing instruction to its original state.

In the following sample, a Specialized emphasis definition has been added to wrap

processing instructions in as emphasis to display in the UI. The emphasis will be

read-only and will not show up in the emphasis combo box.

<EmphasisDef name="PI" friendly="Processing Instruction">
 <Specialized>
 <ProcessingInstruction/>
 </Specialized>
 <Style backColor="blue"/>
</EmphasisDef>

With the above structure, any existing PIs in the document will be wrapped in the

above emphasis . Given an element that looks like the following:

<p> Testing para with PIs in it <?show [AQ]?> - more text

here</p>

The XOM structure will look like the following:

<p> Testing para with PIs in it <PI><?show [AQ]?> </PI>- more

text here</p>

On Save/Normalize, the special emphasis is removed.

Style

Style defines how the Emphasis will appear in the Word document, through its

attributes, which are described below. All are optional.

Style Attributes

Table 13‑11: Style Attributes

Attribute Name Definition

backColor Name of the color to be used as background

highlighting for the emphasized text in the

Word document. A list of valid color names is

provided in Appendix A. Alternately, you may

specify the RGB components of the color using

numbers from 0 to 255, separated by commas.

bold Set to true if the emphasized text is to be

bolded. Defaults to false.

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

200 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Substyles

An option for emphasis is to use Substyles instead of a single Style. Substyles allow

you to assign multiple appearances to a single emphasis style. The user will see each

appearance as a separate emphasis, but in the document XML, the same emphasis

element will appear, regardless of what the user chooses, and an attribute of the

emphasis element will define its appearance. For example, in the example below,

the user may choose to assign Bold, Underline, or Italics as an emphasis.

<EmphasisDef name="EmphasizedText" friendly="Emphasized Text">
 <Style/>
 <SubStyles key="emphasisType">
 <SubStyle value="b" friendly="Bold">
 <Style bold="true"/>
 </SubStyle>
 <SubStyle value="u" friendly="Underline">
 <Style underline="true"/>
 </SubStyle>
 <SubStyle value="i" friendly="Italics">
 <Style italic="true"/>
 </SubStyle>
 </SubStyles>
 <Attributes>
 <AttributeType name="emphasisType"/>
 </Attributes>

Attribute Name Definition

fontName Name of a font that will be used to render the

emphasized text in the Word document. The

font named must be installed on the user’s

computer.

fontSize Font size, in points, to be used to render the

emphasized text in the Word document. The

value must be an integer no less than 8 nor

greater than 72.

foreColor Name of the color to be used to render the

emphasized text in the Word document. A list

of valid color names is provided in Appendix A.

Alternately, you may specify the RGB

components of the color using numbers from 0

to 255, separated by commas.

italic Set to true if the emphasized text is to be

italicized. Defaults to false.

strikethrough Set to true if the emphasized text is to be

rendered with strikethrough formatting.

Defaults to false.

subscript Set to true if the emphasized text is to be

rendered in subscript. Defaults to false.

superscript Set to true if the emphasized text is to be

rendered in superscript. Defaults to false.

underline Set to true if the emphasized text is to be

underlined. Defaults to false.

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 201

</EmphasisDef>

Applied to the Strikethrough definition above, the emphasized text would look like

this in the document XML:

<Paragraph>
 Optional. Set to <EmphasizedText
emphasisType="b">true</EmphasizedText> if the emphasized text is
to be rendered with strikethrough formatting. Defaults to
<EmphasizedText emphasisType="b">false</EmphasizedText>.
</Paragraph>

The <Substyles> element has one required attribute: key. The key value is the name

of the attribute that defines the emphasis substyle. Thus, in the example above,

emphasisType becomes the attribute for the EmphasizedText element.

Each <Substyle> child element will have a value attribute. The value of this

attribute is the value that will be used to identify the type of emphasis to be applied

to the selected text. The <Substyle> element in turn has a child <Style> element

which defines its appearance, in exactly the same manner as the regular <Style>

element does.

If the Substyles node is used, the sibling Style node must be an

empty node with no data as shown in the example above.

Attributes and Attributes Type

Emphasis elements can have attributes associated with them, just as regular

elements can. They are referenced in the Attributes section of the EmphasisDef

element. Each attribute to be associated with the emphasis definition is identified

with the AttributeType element. The AttributeType element’s name attribute

contains the name of an AttributeDef defined earlier in the schema. AttributeType

can use any of the Field Attributes defined in Section 11.6.2.

<EmphasisDef name="Org" friendly="Organization">
 <Style foreColor="Lavender"/>
 <Attributes>
 <AttributeType name="href.jwics"/>
 <AttributeType name="href.siprnet"/>
 <AttributeType name="href.stoneghost"/>
 <AttributeType name="href.niprnet"/>
 <AttributeType name="href.domain5"/>
 </Attributes>
</EmphasisDef>

Associating Emphasis with Elements

Emphasis definitions can be associated with the Para element definition. The Para

element has an optional child element named Emphasis. This element contains an

EmphasisType child node for each emphasis style that can be applied to the text in

a Para element. An example is shown below.

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

202 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

<ElementDef name="para" friendly="Paragraph" style="Body Text">
 <Section>
 <Para>
 <Emphasis>
 <EmphasisType name="color"/>
 <EmphasisType name="bold"/>
 <EmphasisType name="italic"/>
 <EmphasisType name="underline"/>
 <EmphasisType name="link"/>
 <EmphasisType name="replaceable"/>
 <EmphasisType name="xref"/>
 <EmphasisType name="systemitem"/>
 <EmphasisType name="userinput"/>
 <EmphasisType name="anchor"/>
 <EmphasisType name="glossterm"/>
 <EmphasisType name="index"/>
 </Emphasis>
 </Para>
 </Section>
</ElementDef>

Extensibility Methods

With some emphasis styles, you may want to provide a way for users to access a tool

such as a metadata wizard via a command in the context menu. An emphasis style

may use an extensibility method to provide this functionality.

The syntax for using Extensibility Methods is shown below:

<ExtensibilityMethods>
 <ExtensibilityMethod id="method number" friendly="friendly
name" showInComponentContextMenu="true or false"
showInContextMenu="true or false" faceID="#"/>
</ExtensibilityMethods>

Table 13‑12: ExtensibilityMethod Attributes

Attribute Name Required Definition

enableXPath no Value is a boolean XPath

expression which evalutes to a

node-set in which false is

returned for an empty node-set

and true otherwise. When

applied to the runtime

element, indicates whether to

enable the method on the

Context Menu. The XPath

expression will be evaluated

against the current runtime

element and thus must be

relative to it.

Namespaces are not supported

in the xpath syntax.

For the Ribbon, enableXpath

on evaluates against root

notes. Against current node is

not supported.

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 203

Attribute Name Required Definition

faceID no Allows you to specify an icon

that will be displayed next to

the context menu item. The

value of faceId is an integer

corresponding to the ID

number of an icon in the Word

template FaceID.dot.

friendly no Specifies a name for the

context menu command.

id yes Specifies the ID of the EI

method to be called.

showInComponentContextMe

nu

no Defaults to true. When set to

false, the command will not

appear in the Component

context menu.

showInContextMenu no Defaults to true. When set to

false, the command will not

appear in the main context

menu, but may still appear in

the Component context menu

if

showInComponentContextMe

nu is set to true.

showXPath no Value is an XPath expression

which evaluates to a node-set,

and when applied to the

current element, indicates

whether to include the method

on the context menu: if a

node-set is returned, the

method is included; if an

empty node-set is returned, the

method is omitted. When

applied to the runtime

element, indicates whether to

include the method on the

Context Menu. The XPath

expression is applied to the

XOM therefore the names are

XOM element names. The

XPath expression will be

evaluated against the current

runtime element and thus

must be relative to it.

Namespaces are not supported

in the xpath syntax. For

example,

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

204 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

See Section 6 for more information on how to configure Extensibility Interface

methods.

Restricting Emphasis Nesting

By default, emphasis defined for a text element cannot be nested. For example, if an

element named Paragraph can have Bold, Italic, and Underline emphasis applied,

those three emphases cannot be nested unless the schema designer explicitly allows

it.

To allow emphasis nesting, add an Emphasis child to the EmphasisDef element.

Within the Emphasis element, add an EmphasisType node for each emphasis that

you want to allow to be nested. EmphasisType is a leaf node with one attribute:

name. The value of name refers to the Emphasis name.

In the example below, the bold emphasis allows italic and underline emphasis to be

nested within it.

<EmphasisDef name="bold" friendly="Bold">
 <Style bold="true"/>
 <Emphasis>
 <EmphasisType name="italic"/>
 <EmphasisType name="underline"/>
 </Emphasis>
</EmphasisDef>
In the next example, the italic emphasis allows only underline
emphasis to be nested within it.
<EmphasisDef name="italic" friendly="Italic">
 <Style italic="true"/>
 <Emphasis>
 <EmphasisType name="underline"/>
 </Emphasis>
</EmphasisDef>

Thus, an author could apply bold emphasis to a range of text and then apply either

italic or underline to it. However, if the author first applied italic emphasis to text,

only the underline emphasis could subsequently be applied to that range, because

italic does not permit bold to be nested within it. Likewise, the author could apply

bold and then italic, but not bold, then italic, and then underline. To allow all three

emphasis styles to be applied in any combination, all three would need to be

defined to allow the others. The italic EmphasisDef would receive a second

EmphasisType element, as shown below:

<EmphasisDef name="italic" friendly="Italic">
 <Style italic="true"/>
 <Emphasis>
 <EmphasisType name="underline"/>
 <EmphasisType name="bold"/>

Attribute Name Required Definition

showXPath=”self::node()[local-

name()=’Section’]”.

XML Author does not support

dynamic show/hide of Ribbon

items, therefore showXPath is

not applicable for Ribbon

items.

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 205

 </Emphasis>
</EmphasisDef>

The underline emphasis would be defined as shown below:

<EmphasisDef name="underline" friendly="Underline">
 <Style underline="true"/>
 <Emphasis>
 <EmphasisType name="italic"/>
 <EmphasisType name="bold"/>
 </Emphasis>
</EmphasisDef>

Inline Media

The EmphasisDef element has an optional child element named Media. This

element contains a MediaType child node for each media type (both reference and

embedded) that can be inserted inline to the text in a EmphasisDef element.

Table 13‑13: MediaType Attributes

See section 14.6.2, ‘’Images

In order for images to be rendered properly on the Word canvas,

every image element definition in the solution must be configured with following

image data-types: imagewidth, imageheight, imagewidthdpi, imageheightdpi. See

“Table 11‑4: Field Attributes – datatype values”.

Supported Image Formats”, See “Table 11-4:Field Attributes – datatype values:,

Supported Image Formats”, for a list of supported image formats.

An ElementDef cannot have an media element as both a child

element and an inline element in the same ElementDef.

Inline OLE

The EmphasisDef element has an optional child element named OLE. This element

contains a OLEType child node for each OLE type that can be inserted inline to the

text in a EmphasisDef element.

Attribute Required Definition

name yes Identifies an ElementDef node

in the schema for the media

element

QUARK XML AUTHOR STRUCTURE EMPHASIS DEFINITION

206 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Supported element types include:

MathTypeEquation •

OLEWordDocument •

Table 13‑14: OLEType Attributes

Attribute Required Definition

name yes name of the elementDef node

containing the OLE definition.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN GUIDE |

Quark XML Author Structure
Element Definition

Each element that makes up the element definition section of the schema is defined

below. An example is provided with each to demonstrate proper syntax for the

element’s use.

The Elements element contains the collection of element definition elements for

the schema, and is a direct child of the XpressSchema root element. Elements uses

no attributes.

<Elements>
 <ElementDef name="title">
 <!-- Element definition data -->
 </ElementDef>
 <!-- Additional ElementDef elements here -->
</Elements>

ElementDef

ElementDef defines a single element of the schema. ElementDef names the element

and provides basic information about it. Child nodes, discussed later in this section,

further define the element.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

208 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 14‑1: Configuration-XSD ElementDef definition

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 209

Figure 14‑2: Configuration-XSD ElementDef definition with attributes

ElementDef may use any of the attributes defined in the Common Attributes

attribute group. It has several additional optional attributes available, each of which

is defined below.

Table 14‑1: ElementDef Attributes

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

210 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Attribute Required Definition

allowCopy no Boolean. Defaults to true. If set

to false, the Copy context

menu item for the element is

disabled.

allowCut no Boolean. Defaults to true. If set

to false, the Cut context menu

item for the element is

disabled.

allowRemove no Boolean. Defaults to true. If set

to false, the Remove context

menu item for the element is

disabled.

calloutAttribute no Used with any numbered style

ElementDef. When the

document is saved/exported,

the calloutAttribute attribute

value will contain the list

string value of the numbered

style element.

contextId no Specifies a contextual identifier

for the element. If a

SectionType within the

ElementDef also has a

contextId, the SectionType

contextId overrides the

ElementDef contextId.

excludeFromChangeToContext

Menu

no Boolean. Set to true to remove

the Change To menu from this

element’s context menu and

exclude this element from the

Change To context menu of

other element types. The

Change To feature would be

unavailable from the user

interface. Defaults to false.

excludeFromComponentConte

xtMenu

no Boolean. Defaults to false. Set

to true to exclude the

component from the

component context menu.

excludeFromContextMenu no Boolean. Set to true if the

ElementDef defines an element

that the user cannot insert

directly into the document.

This applies to internally

generated insertable items, not

to items added via

externalMethodID.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 211

Attribute Required Definition

excludeExternalFriendlyFromC

ontextMenu

no Boolean. Set to true if the

ElementDef defines an element

that the user cannot insert

directly into the document.

This applies to items added via

externalMethodID.

externalMethodId no The externalMethodId

attribute on an ElementDef

node lets an EI developer

control the actual fragment

that gets inserted in Quark

XML Author. This is different

from the EIs defined under the

<ExtensibilityMethods> node

which let you perform

operations on an existing

fragment. If used, this attribute

adds an insertable item to the

Context Menu. Be sure to set

excludeFromContextMenu to

true, so that the internally

generated insertable item is

hidden.

The EI method that is called

must return an XmlElement. If

it returns null or a non-Xml

Element the insert will be

cancelled as if the user

cancelled the Insert operation.

If the EI throws an exception,

an error dialog will be shown

in Quark XML Author

notifying the user about Insert

failure. The returned

XmlElement must match the

name of the insertable element

which the user selected and

must match the structure

defined for the element in the

XAS. If it does not match, the

user will be shown en error

dialog and Insert will be

cancelled.

Note that the method called

can use the Tag argument type

to pass the actual caption

name that the user clicks in

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

212 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Attribute Required Definition

Quark XML Author. See Tag in

section 6.2.1.2 for more

information about the Tag

argument. This provides a way

of providing the caption to the

EI, but the EI may not modify

the caption.

See the case study presented in

Chapter 21 for examples of

using externalMethodId in this

context.

This attribute can only be

specified for an optional

element in the schema.

externalMethodFriendly no Specifies the friendly name

associated with the external

method that will be displayed

in the user interface, Content

Menu. <ElementDef

name=”section1”

friendly=”Section 1”

xmlname=”topic”

visible=”false”

referenceAttribute=”conref”

externalMethodId=”GetElemen

t”

externalMethodFriendly=”Secti

on 1 from server”>

If externalMethodId is

specified and

externalMethodFriendly is

omitted, the label displayed to

the user in the insertables

Context Menu and Styles

control is @friendly or @name

with “(custom)” appended.

Friendly no Specifies a friendly name for

the element being defined.

isList no Boolean. Defaults to false. If

set to true, this element will be

regarded as a list item by the

list manager. If set to false, the

list manager will ignore this

node.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 213

Attribute Required Definition

isList specifies whether or not a

numbered list may continue

numbering from a previous

sibling numbered list. If a

configuration contains the

following hierarchy:

Section

 List

 List Item

Then a Quark XML Author

document may contain the

following content:

Section A

 List A

 List Item 1

 List Item 2

Section B

 List B

 List Item 1

 List Item 2

In the configuration, if isList is

set to true for Section, then the

numbering of List B may

continue from List A. List B >

List Item 1 may be numbered

3.

In the configuration, if isList is

set to false for Section and true

for List, List B may not

continue from List A. List B >

List Item 1 may only be

numbered 1.

isTable no Deprecated in 4.x tables. For

pre 4.0 tables, set to true if the

ElementDef defines a table

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

214 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Attribute Required Definition

element. Defaults to false. See

“Table” for more information

about creating tables.

linkDropHandler no Specifies the ID of the EI

method to be called when the

user drops a hyperlink onto

the element. See “Drag and

Drop”. Overrides any other

internal XML Author behavior.

maxLength no Specifies the maximum

amount of visible characters

that can be added to the

element and its descendant

elements. The amount is a

cumulative total, not the

amount allowed in each

element.

numbering no Valid values are: continue and

restart. If set to continue,

numbering will continue from

previous numbered element,

ignoring internal logic for

numbering continuance or

restart. Defaults to restart.

referenceAttribute no Used when an element can be

the target of a cross reference

or, in DITA, a conref. The value

holds the name of the attribute

whose value is required for the

resolution of the element. In

DITA’s case that attribute will

be conref.

style no Specifies the name of a Word

style that will be used to render

the element in the authoring

environment.

tooltipTransform no Defines the path to an XSLT

file used to define the text

displayed when the user hovers

over the element.

visible no Boolean. Set to false if the

element will not be visible to

the user within the authoring

environment. Defaults to false.

allowPortionmark No Boolean. If set to true, sets the

visibility of Portionmarks for

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 215

Section

Section represents a collection of multiple elements that form a coherent subset of

the document, such as a chapter in a book or a subtopic in an article. Section may

contain a Para element and/or one or more Sequence or Choice elements, which in

turn contain the document elements that comprise the document section.

See Para for more information. •

See Sequence for more information. •

See Choice for more information. •

Figure 14‑3: Configuration-XSD ElementDef > Section definition

Table 14‑2: Section Attributes

Attribute Required Definition

an element type. Defaults to

False

Attribute Required Definition

displayAttribute no String. Allows you to specify

that instead of the element

name, the value of the

attribute named will be

displayed to the user.

displayElement no Boolean. If set to true, the

display name of the element’s

Component menu will be the

name of the element’s first

child element. This attribute is

used to facilitate the following

use case. The element C has

two child elements, A and B.

This attribute allows the user

to right-click on A or B and

access the Component menu

for C, which is the “insertable”

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

216 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Para

Para represents a text element, such as a paragraph, caption, or title. It may have an

Emphasis child element to indicate that emphasis styles may be applied to the text

it contains. Para uses these optional attributes: default, readonly, childTextNode and

defaultHyperlink.

Table 14‑3: Para Attributes

Attribute Required Definition

parent of A and B.

Attribute Required Definition

childTextnode no Set to true to allow combining

multiple child text nodes

specified under the para node

into the parent node. Does not

support the insertion of soft

line breaks. Pressing Shift-Enter

key acts the same as pressing

Enter key. Can be used in

conjunction with insertAfter.

See “Table 14‑133: SectionType

Attributes” for more

information.

default no Default text for the para

element.

defaultHyperlink No Specifies the target hyperlink

emphasis that should be

applied when a text type link is

dragged onto this para type

element. If defaultHyperlink is

not specified, text links are

ignored. For a given dropped

link on a para type element,

precedence is resolution of an

inline element resolution and

then evaluation for hyperlink

emphasis.

Formats are categorized as

definitions with and without

SubStyles defined:

Without SubStyles defined:

{emphasisName} Specify the

name of an existing emphasis

definition. This format is used

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 217

Attribute Required Definition

when the target emphasis

definition has Style defined,

but no SubStyles defined.

With SubStyles defined:

{emphasisName}@{attributeNa

me}={attributeValue}.

For example,

defaultHyperlink=”xrefemph@f

ormat=’html’” or

defaultHyperlink=”xrefemph@

outputclass=’inter’”

The string following the @

identifies which sub-style to

apply on the canvas.

For example,

<EmphasisDef

name=”xrefemph”

friendly=”Cross Reference”

xmlname=”xref”

excludeFromEmphasisCombo=

”true”>

 <Style/>

 <SubStyles

key="format">

 <SubStyle

value="dita"

friendly="Cross-

Reference">

<Style foreColor="blue"

underline="true"/>

</SubStyle>

 <SubStyle

value="html"

friendly="Hyperlink">

<Style foreColor="blue"

underline="true"/>

</SubStyle>

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

218 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Attribute Required Definition

 </SubStyles>

 <Attributes>

 ..

<AttributeType

name="outputclass"/>

 </Attributes>

 <Emphasis/>

</EmphasisDef>

or

<EmphasisDef

name="xrefemph"

friendly="Cross

Reference"

xmlname="xref"

excludeFromEmphasisCombo

="true" readonly="true">

 ..

 <Style/>

 <SubStyles

key="outputclass">

 <SubStyle

value="intra"

friendly="Cross

Reference">

<Style underline="true"

foreColor="Blue"/>

</SubStyle>

 <SubStyle

value="inter"

friendly="Hyperlink">

<Style underline="true"

foreColor="Blue"

italic="true"/>

</SubStyle>

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 219

Qua childTextnode Serialization

This section discusses the serialization of childTextnodes elements. Given the

following sample configuration fragment.

<ElementDef name="p">
 <Section>
 <Para/>
 <Choice minOccurs="0"
maxOccurs="unbounded">
 <SectionType name="..."/>
 <SectionType name="my-child-
textnode"/>
 </Choice>
 </Section>
</ElementDef>

When a user inserts my-child-textnode, an element is added to the XOM just like

any other element. However, the element is temporary and exists only while the

document is open in Quark XML Author. The childTextnode element only exists to

hold a text fragment for its parent para-type (<p>). When serialized, the

childTextnodes wrapper is dropped, leaving its text fragment within the parent

element.

For example, the following XOM:

<p>first text fragment
 <my-child-textnode>second text fragment</my-child-textnode>
 <my-child-textnode>third text fragment</my-child-textnode>
</p>

is serialized as:

<p>first text fragment
second text fragment
third text fragment
</p>

Let’s look at a mixed-content example.

Attribute Required Definition

 </SubStyles>

 <Attributes>

 ..

<AttributeType

name="outputclass"/>

 </Attributes>

 <Emphasis/>

</EmphasisDef>

readonly no Set to true to lock the para

element upon insertion so that

the user cannot edit the default

text.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

220 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

The following content on the canvas inside a cell (an element named “entry”):

————(Empty)

<CellChildTextNode> first child text node</CellChildTextNode>

————(Empty)

One •

————(Empty)

Two •

————(Empty)

<CellChildTextNode> second child text node</CellChildTextNode>

——— (Empty)

<CellChildTextNode> third child text node</CellChildTextNode>

is serialized as:

<entry> first child text node

<bulletul><bulletuli>one</bulletuli><bulletuli>two</bulletuli></bulletul> second

child text node\n third child text node</entry>

During Serialization, adjacent childTextnode elements are serialized as a single

textnode fragment, with each element delimited in XML with a line break.

Deserialization inserts a childTextnode element for each line break for each

textnode fragment. When the document is re-opened, the content is displayed on

the canvas the same as it did before the document was closed.

childTextnode

The following discusses the user experience and developer’s perspective.

From a user’s perspective, right-clicking a childTextnode provides access to

Attributes and EI methods associated with the childTextnode’s parent element.

From an EI developer’s perspective, with the current selection on a child textnode,

the XomCurrentNode argument references an element in the XOM associated with

the childTextnode, distinct from its parent element.

For more information see, “Error! Reference source not found.”

Emphasis is not ‘inherited’ from the parent. The emphasis defined for the child text

node must match the parent. Multiple parent elements could contain the

childtextnode Child so this is important.

Emphasis

Emphasis represents an inline element. The Para element has an optional child

element named Emphasis. The Emphasis element contains an EmphasisType child

node for each emphasis style that can be applied to the text in a Para element.

Table 14‑4: Emphasis Attributes

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 221

Table 14‑5: EmphasisType Attributes

Inline Media

The Para element has an optional child element named Media. This element

contains a MediaType child node for each media type that can be inserted inline to

the text in a Para element.

Table 14‑6: MediaType Attributes

See “Images” for a list of supported image formats.

Attribute Required Definition

allowMedia no Specifies whether media is

allowed under Emphasis. If set

to yes, allows media elements

under any emphasis. If set to

no, does not allow media

under any emphasis. If set to

restricted, the allow/disallow

behavior is derived from the

individual emphasis

definitions under the

EmphasisDef/Media node.

allowOLE no Specifies whether OLE

elements are allowed under

Emphasis. If set to yes, allows

OLE elements under any

emphasis. If set to no, does not

allow OLE elements under any

emphasis. If set to restricted,

the allow/disallow behavior is

derived from the individual

emphasis definitions under the

EmphasisDef/OLE node.

Attribute Required Definition

name yes Identifies an EmphasisDef

node in the schema.

Attribute Required Definition

name yes Identifies an ElementDef node

in the schema.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

222 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Inline OLE

The Para element has an optional child element named OLE. This element contains

a OLEType child node for each OLE type that can be inserted inline to the text in a

Para element.

Supported element types include:

MathTypeEquation •

Table 14‑7: OLEType Attributes

Sequence

A Sequence element indicates that the elements it contains can only be inserted

into a document in the order in which they are listed. Sequence may contain any of

the following child elements: OLEType, MediaType, TableType, ReferenceType,

SectionType, UniqueidentifierType, UnmanagedType and EndnoteType.

These elements are defined later in this chapter.

See “OLEType” for more information. •

See “TableType” for more information. •

See “Table 14‑10: TableType Attributes

See “MediaType” for more information. •

See “ReferenceType” for more information. •

See “SectionType” for more information. •

See “UniqueidentifierType” for more information. •

See “UnmanagedType” for more information. •

See “EndNoteType” for more information. •

Attribute Required Definition

name yes The name of the elementDef

containing the OLE definition.

Attribute Required Definition

Name yes Specifies the name by which

the element will be identified.

insertAfter no Allows you to add new body

text after a table when the

<Enter> key is used at the top

or at the end of a table.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 223

Figure 14‑4: Configuration-XSD Section > Sequence definition

Table 14‑8: Sequence Attributes

Choice

A choice element indicates that the elements it contains can be inserted into a

document in any order. Choice may contain any of the following child elements:

OLEType, MediaType, TableType, ReferenceType, SectionType,

UniqueidentifierType, UnmanagedType and EndnoteType.

These elements are defined later in this chapter.

Attribute Required Definition

maxOccurs no Indicates the maximum

number of times the

element can be added to

the section. Valid values

are: 1 and UNBOUNDED.

The latter indicates that

there is no limit to the

number of times the

element may be added.

Defaults to 1.

minOccurs no Indicates the minimum

number of times the

element can be added to

the section. Valid values

are 0 and 1. Defaults to 1.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

224 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

See “OLEType” for more information. •

See “TableType” for more information. •

See “Table 14‑10: TableType Attributes

See “MediaType” for more information. •

See “ReferenceType” for more information. •

See “SectionType” for more information. •

See “UniqueidentifierType” for more information. •

See “UnmanagedType” for more information. •

See “EndNoteType” for more information. •

Figure 14‑5: Configuration-XSD Section > Choice definition

The number of required Choice elements that can be specified for a given

section is unlimited. Required elements can have required Choice elements and

this can cascade to an arbitrary depth. Likewise, required Choice elements can

Attribute Required Definition

Name yes Specifies the name by which

the element will be identified.

insertAfter no Allows you to add new body

text after a table when the

<Enter> key is used at the top

or at the end of a table.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 225

themselves have required Choice elements and this can cascade to an arbitrary

depth.

Table 14‑9: Choice Attributes

OLEType

Indicates that a type of OLE element can be inserted into the Sequence or Choice. It

uses only one attribute: name, which is required, and specifies the name by which

the element will be identified.

See “OLE” for more information.

TableType

Indicates that a type of Table can be inserted into the Sequence or Choice.

See “Table” for more information.

Example:

<TableType name="CalsTable" insertAfter="p"/>
<TableType name="simpletable" insertAfter="p"/>
<TableType name="HtmlTable" insertAfter="p"/>

Table 14‑10: TableType Attributes

Attribute Required Definition

maxOccurs no Indicates the maximum

number of times the

element can be added to

the section. Valid values

are: 1 and UNBOUNDED.

The latter indicates that

there is no limit to the

number of times the

element may be added.

Defaults to 1.

minOccurs no Indicates the minimum

number of times the

element can be added to

the section. Valid values

are 0 and 1. Defaults to 1.

submenu no Boolean. Used only with

the Choice element. If set

to false, required child

elements will appear

beneath the element in

the context menu, instead

of in a submenu. Defaults

to true.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

226 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

MediaType

MediaType indicates that a media element can be inserted into the Sequence or

Choice within the Section.

See “Media” for more information.

Table 14‑111: MediaType Attributes

ReferenceType

ReferenceType indicates that a reference element can be inserted into the Sequence

or Choice within the Section.

See “Reference” for more information.

Table 14‑122: ReferenceType Attributes

Attribute Required Definition

Name yes Specifies the name by which

the element will be identified.

insertAfter no Allows you to add new body

text after a table when the

<Enter> key is used at the top

or at the end of a table.

Attribute Required Definition

friendly no Specifies a friendly name for

the element.

name yes Specifies the name by which

the element will be identified.

style no Specifies a Word style name

that will be used to render the

element’s text in the user

interface.

Attribute Required Definition

insertAfter no Specifies the element to be

inserted after the current

element if the user hits the

Enter key.

insertAfterBlank no Used with list items only.

Specifies the element to be

inserted after the parent list

element if the user presses the

Enter key and the current list

item has no text.

friendly no Specifies a friendly name for

the element. This is used to

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 227

SectionType

SectionType indicates that a Section element can be inserted into the Sequence or

Choice within another Section.

See “Section” for more information.

SectionType may use any of the attributes defined within the definitionAttributes

attribute group. It also requires the use of the name attribute, which specifies the

name by which the element will be identified.

Table 14‑133: SectionType Attributes

Attribute Required Definition

override the friendly specified

in the definition.

name yes Specifies the name by which

the element will be identified.

style no Specifies a Word style name

that will be used to render the

element’s text in the user

interface.

Attribute Required Definition

contextId no Specifies a contextual identifier

for the reference. If the parent

element has a contextId, the

SectionType contextId

overrides the parent.

default no Default text for the element.

Note that certain characters

(forward slash, left and right

square braces, left and right

curly braces, star, and tilde) are

reserved by the system and

must be represented by codes.

Codes are given in Table 5‑18

on page 82.

decreaseIndent no Value indicates a different

element to which the present

element will be changed when

the user presses Shift + Tab at

the beginning of the element.

friendly no Specifies a friendly name for

the element being defined.

increaseIndent no Value indicates a different

element to which the present

element will be changed when

the user presses the Tab key at

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

228 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Multiple Increase/Decrease Indent values

The increaseIndent and decreaseIndent attributes can also specify multiple

descendant/ancestor values separated by a forward slash (/). Consider the following

example:

<ElementDef name="ol">
 <Section>
 <Sequence maxOccurs="unbounded">
 <SectionType name="oli" increaseIndent="suboli/subuli"/>

Attribute Required Definition

the beginning of the element

insertAfter no Specifies the element to be

inserted after the current

element if the user presses the

Enter key. When the user types

in an Empty, the system uses

the insertAfter setting of the

previous element.

insertAfterBlank no Used with list items only.

Specifies the element to be

inserted after the parent list

element if the user presses the

Enter key and the current list

item has no text.

name yes Specifies the name by which

the element will be identified.

numbering no If set to continue, numbering

will continue from previous

numbered element, ignoring

internal logic for numbering

continuance or restart.

Defaults to restart. Valid values

are continue and restart.

readOnly no Boolean. Set to true to lock the

para element upon insertion so

that the user cannot edit the

default text.

style no Specifies the name of a Word

style that will be used to render

the element in the authoring

environment.

visible no Boolean. Set to false if the

element will not be visible to

the user within the authoring

environment. Defaults to true.

allowPortionmark No Boolean. If set to true, sets the

visibility of Portionmarks for a

section type. Defaults to false.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 229

 </Sequence>
 </Section>
</ElementDef>

With the following XOM structure:

 <oli> ordered list item 1
 <subul>
 <subuli>Unordered sub list item</subuli>
 <subul>
 </oli>
 <oli>ordered list item 2 </oli>

Tabbing on the last oli element (shown highlighted above) will convert it to a subuli

item under the previous oli sibling. The resulting structure will become:

 <oli>
 ordered list item 1
 <subul>
 <subuli>Unordered sub list item</subuli>
 <subuli>ordered list item 2 </subuli>
 <subul>
 </oli>

This is because in the SectionType for oli, we have specified both suboli and subuli

as possible targets. This example assumes, of course, that the ElementDef for oli

allows the necessary child elements that themselves contain subuli and suboli

children.

If subuli was not specified (i.e. increaseIndent=”suboli”), the resulting structure

would be:

 <oli>
 ordered list item 1
 <subul>
 <subuli>Unordered sub list item</subuli>
 <subul>
 <subol>
 <subuli>ordered list item 2 </subuli>
 </subol>
 </oli>

For example, a new subol gets added under subul if allowed by the schema.

UniqueidentifierType

UniqueidentifierType indicates that a Uniqueidentifier element can be inserted into

the Sequence or Choice within a Section. It uses only one attribute: name, which is

required, and specifies the name by which the element will be identified.See

“Uniqueide

UnmanagedType

UnmanagedType indicates that an Unmanaged element can be inserted into the

Sequence or Choice within a Section. It uses only one attribute: name, which is

required, and specifies the name by which the element will be identified.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

230 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

See “Unmanaged” for more information.

EndNoteType

Indicates a type of EndNote that can be stored in the Sequence or Choice. The value

for minOccurs on the parent Sequence or Choice is always 0 and the value for

maxOccurs on the parent is always 1 for the EndnoteType element, so these values

do not need to be specified.

See “EndNote” for more information.

Uniqueidentifier

A Uniqueidentifier element auto-assigns a GUID to the element’s text node. As with

other ElementDefs, a Uniqueidentifier may be visible or hidden. When a document

is opened, all null Uniqueidentifier elements are auto-assigned. Likewise, when a

Uniqueidentifier element is inserted, it is auto-assigned.

See “Uniqueidentifier” for more information.

Unmanaged

An Unmanaged element is one that is inserted into the XOM, but is not used or

represented to the user by Quark XML Author. It allows elements to be inserted into

the document via and for the use of external applications.

See “UnmanagedTypeUniqueidentifierType” for more information.

OLE

An OLE element allows the insertion of OLE objects as a child of a Section >

Sequence and Section > Choice.

See “OLEType” for more information.

It has one attribute, readonly, described in Table 14‑14.

Table 14‑144: OLE Attributes

An OLE element may contain a MathTypeEquation or a OLEWordDocument as a

child element. MathTypeEquation attributes are described in Table 14‑15.

OLEWordDocument attributes are described in Table 23‑1.

Read-only scenarios

In regards to the readonly attribute, MathTypeEquation and OLEWordDocument

are treated differently. In XML Author, if the user double-clicks an

Attribute Name Required Definition

readonly no If set to true, the OLE object

may not be edited. Defaults to

false.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 231

MathTypeEquation, the system does not launch the equation editor. If the user

double-clicks an OLEWordDocument, the system launches a new Word window

that contains the embedded document. This allows users to view the entire Word

document. The embedded document is also treated this way if the XML Author

document is read-only. For more information, see “SetAccessMode”, “Starter

Document” and “IsEditableElement”.

In these read-only scenarios, the new Word window that the system launches is the

opened in protected mode with a password. This prevents the user from editing the

Word document. Using the document protection feature of Word in this way allows

XML Author to react to changes made to the read-only status of the parent XML

Author document while it is open. If the embedded document is already open in

separate Word window, and the status of the parent XML Author document

becomes read-only, then changes in the embedded document are not synched

MathTypeEquation

For more information on implementing math equation support, see “MathType

Integration”.

Table 14‑155: MathTypeEquation Attributes

Attribute Name Required Definition

exportFormat no Rendition file type. Supported

image formats include:WMF

and GIF. Defaults to GIF.

saveMTEF no Deprecated in 4.5.1. XML

Author will open documents

that contain data in this

format and convert the data to

OLE Object format. This occurs

transparent to the user. The

change was required to reliably

preserve and render MathType

equation dimensions.

If set to true, the math

equation data is saved as MTEF

(lossless), MathML and image

formats, otherwise the data is

saved as MathML and image

formats. Defaults to true.

saveOLEObject no If set to true, the math

equation data is saved as

binary OLE object, MathML

and image formats, otherwise

the data is saved as MathML

and image formats. Defaults to

true. Must be used instead of

saveMTEF to reliably preserve

and render MathType equation

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

232 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

An example is shown below:

<OLE readonly="false">
 <MathTypeEquation exportFormat="GIF" saveOLEObject="true"
translator="MathML2 (no namespace).tdl" includeTranslator="true"
includeMathTypeData="true"/>
</OLE>

For information on inline OLE see section 13.1.2 and section 14.2.1.5.

OLEWordDocument

Allows the user to embed a fully functional Word document within an XML Author

document. The user can edit the document without restrictions, but the intended

use of this feature is to support embedded large/complex tables.

For details implementing embedded Word document support, see “OLE Word

Document Integration”.

Media

There are two types of Media elements available: one which defines a parent

reference element to allow a media object from a repository to be referenced in the

document, and one which allows image media to be inserted directly into the

document.

Attribute Name Required Definition

dimensions. This must be set

to true, because Mathtype 6.0

doesn’t have the ability to

import MathML.

includeMathTypeData no If set to true, annotation data

is saved. Defaults to true.

includeTranslator no If set to true, translator

comments are saved. Defaults

to true.

translator no Specifies a .TDL translator file

which is used to control the

format of exported MathML.

Supports MathType and

custom translator files.

Defaults to “MathML2 (no

namespaces).tdl”. Be aware

that some translators do not

export MathML, but instead

act as inputs to other

translators. Contact Design

Science technical support for

details.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 233

See “Table 14‑10: TableType Attributes

MediaType

An ElementDef cannot have a media element as both a child

element and an “Inline Media” in the same ElementDef.

Media as Local Object

When media are to be inserted as a local object, the Media element is used as the

child of an ElementDef element. It is an empty element, and serves only to notify

the Quark XML Author add-in that its content is to be Base64 encoded.

Table 14‑166: Local Media Attributes

Images

In order for images to be rendered properly on the Word canvas, every image

element definition in the solution must be configured with following image data-

types: imagewidth, imageheight, imagewidthdpi, imageheightdpi. See “Table 11‑4:

Field Attributes – datatype values”.

Supported Image Formats

Quark XML Author supports the following image file formats:

Attribute Required Definition

Name yes Specifies the name by which

the element will be identified.

insertAfter no Allows you to add new body

text after a table when the

<Enter> key is used at the top

or at the end of a table.

Attribute Required Definition

maxFileSize no Specifies the maximum file size

in megabytes. Defaults to 0,

which indicates no maximum

file size.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

234 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

BMP, DIB, EMF, EMZ, GIF, JFIF, JPEG, JPG, JPE, PNG, RLE, TIFF, TIF, WMZ, and WMF.

EPS images are not longer supported in Office. For more information from Microsoft

see, “ Support for EPS images has been turned off in Office“.

Image Validation

Image Type

When the user attempts to insert an image in a document, the system performs a

check to ensure that the image data format matches the format associated with the

file extension. If the binary signature in the image header is the correct value for

that image file type, then the system inserts the image. If not, the system displays

the following message to the user. “{0}” is replaced with the file extension:

“Image data does not match the format associated with the file extension: {0}.”

XML Author processes images based on the file type indicated by the file extension.

Occasionally, Quark has encountered images where the image data format and the

file extension do not match. These bad images could not be processed and

occasionally resulted in corrupt XML Author documents. This check was added to

prevent that situation.

Image Metadata

In order for images to be rendered properly on the Word canvas, the following

image metadata must be known: image width, image height, image width dpi,

image height dpi. These values are needed in order to needed in order for the

system to properly calculate the area or “box” on the Word canvas in which the

image is rendered. For this discussion, the values “exist” if the attributes are present

for the XML image element. Before an image is rendered these values are analyzed.

If the image height and width exist and the image height dpi and image width dpi

exist and match the values in the image binary data, then the system has all

necessary information to calculate the area and render the image.

However, it is possible that some of these values may be missing in the image

element or different from the values in the image binary data. In this situation, the

following logic applies.

If either image width or image height does exist, then retrieve image width, image

height, image width dpi and image height dpi from the image binary data and store

them in the image element.

If image width and image height exist, but either image width dpi or image height

dpi does not exist, then retrieve image width dpi and image height dpi from the

image binary data and store them in the image element.

If image width, image height, image width dpi and image height dpi exist, but

either image width dpi or image height dpi is different from the same value in the

image binary data, then retrieve image width dpi and image height dpi from the

image binary data and use those dpi values to recalculate the image height and

width and store these values in the image element.

https://support.office.com/en-us/article/Support-for-EPS-images-has-been-turned-off-in-Office-A069D664-4BCF-415E-A1B5-CBB0C334A840

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 235

Reference

Reference defines an element that is used to insert external content into a

document, such as a media item or reusable text. It contains one or more

ComponentType child elements, or one Media child element, and has no attributes.

Table 14‑177: Reference Attributes

See “ReferenceType” for more information.

<ElementDef name="media" friendly="Media Reference"
style="Reference">
 <Reference>
 <Media xmlname="mediaobjectDef" friendly="Media">
 <Mimetypes>
 <!-- Mimetype elements -->
 </Mimetypes>
 <Attributes>
 <!-- AttributeType elements -->
 </Attributes>
 </Media>
 </Reference>
 <Attributes>
 <!-- AttributeType elements -->
 </Attributes>
</ElementDef>

Media

As a child of the Reference element, Media may have two child elements: Attributes,

which identifies attributes that will be applied to the element in the schema, and

Mimetypes. The Mimetypes element is further described below.

Table 14‑188: Referenced Media Attributes

Attribute Required Definition

altAttribute Specifies any attribute whose

value will act as a tooltip for a

referenced image.

Attribute Required Definition

excludeFromComponentConte

xtMenu

no Boolean. Defaults to false. Set

to true to exclude the

component from the

component context menu.

friendly no Specifies a user-friendly name

that will identify the element

to the user.

maxFileSize no Specifies the maximum file size

in megabytes. Defaults to 0,

which indicates no maximum

file size.

required no Allows the media object to be

deleted on its own

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

236 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Mimetypes and MimeType

The MimeTypes element contains the collection of MimeType elements that define

what types of media can be inserted into the media element. It uses no attributes.

Mimetype has one attribute: type. Type identifies a media type and file format that

may be inserted into the media element, as shown in the Syntax Sample below.

<Media xmlname="mediaobjectDef" friendly="Media">
 <Mimetypes>
 <Mimetype type="image/bmp"/>
 <Mimetype type="image/gif"/>
 <Mimetype type="image/jpeg"/>
 <Mimetype type="image/jpg"/>
 <Mimetype type="image/png"/>
 <Mimetype type="image/tif"/>
 <Mimetype type="image/tiff"/>
 </Mimetypes>
 <Attributes>
 <!-- AttributeType elements -->
 </Attributes>
</Media>

For more information on supporting images, see “Images”.

Attribute Required Definition

(mediaObjectDef in the above

definition) without deleting

the parent media element

(media in the above

definition). In other words,

setting required=false implies

mediaObjectDef minOccurs=0

maxOccurs=1 (i.e optional). If

not specified, the required

attribute defaults to true. If

false, the image can be deleted

without deleting the image

container. With required=false,

the excludeFromContextMenu

for the container element

(media ElementDef above)

must be true.

style no Specifies a Word paragraph

style that will be used to

display the element title in the

Word document.

xmlname yes Specifies the name by which

the element is identified in the

XML document.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 237

ComponentType

As a child of the Reference element, ComponentType defines a non-media item that

may be inserted into the document as a reference. It uses only one attribute: name,

which specifies the type of content that can be referenced.

<ElementDef name="AllRef" friendly="Reference" style="Reference">
 <Reference>
 <ComponentType name="para"/>
 <ComponentType name="illust"/>
 <ComponentType name="list"/>
 <ComponentType name="table"/>
 <ComponentType name="Slide"/>
 </Reference>
 <Attributes>
 <AttributeType name="element.number"/>
 </Attributes>
</ElementDef>

EndNote

The Endnote element supports both traditional end notes as well as notes tied to

specific elements. Typically, this capability is used to create table notes, but it would

be possible to have section notes, paragraph notes, and so on. Endnote is a leaf of

ElementDef, and serves as a holding area for all endnote emphasis element

instances.

See “EndNoteType” for more information.

The structure of the ElementDef is as follows:

<ElementDef name="Endnote" visible="false">
 <Endnote/>
 <ElementDef>

Endnote is used in conjunction with the EndnoteType element (a child of Sequence

or Choice) and must also have a supporting emphasisDef element.

The following discussion demonstrates how these various components integrate,

and builds upon the ElementDef example given above.

Define Endnote Emphasis

The Endnote element supports both traditional end notes as well as notes tied to

specific elements. Typically, this capability is used to create table notes, but it would

be possible to have section notes, paragraph notes, and so on. Endnote is a leaf of

ElementDef, and serves as a holding area for all endnote emphasis element

instances.

See “EndNoteType” for more information.

The structure of the ElementDef is as follows:

<ElementDef name="Endnote" visible="false">
 <Endnote/>
 <ElementDef>

Endnote is used in conjunction with the EndnoteType element (a child of Sequence

or Choice) and must also have a supporting emphasisDef element.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

238 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

The following discussion demonstrates how these various components integrate,

and builds upon the ElementDef example given above.

Using the EndnoteType Element

The node that will store the collection of Endnotes is identified by using the

EndnoteType element as a child of a Sequence node somewhere in the schema.

Typically, this node is located in the document root declaration element, as in the

highlighted nodeset in the following example:

<ElementDef name="dita" friendly="Document" visible="false"
excludeFromComponentContextMenu="true">
 <Section>
 <Sequence minOccurs="0" maxOccurs="1">
 <!-- This node contains information for processing Entity
emphasis tagging -->
 <UnmanagedType name="formdata"/>
 </Sequence>
 <Sequence minOccurs="0" maxOccurs="unbounded">
 <SectionType name="topic" friendly="Heading 1"/>
 </Sequence>
 <Sequence>
 <!-- minOccurs=0 and maxOccurs=1 always for a EndnoteType
element -->
 <!-- Furthermore there can only be one reference of a
particular EndNoteType element in the entire schema-->
 <EndnoteType name="Endnote"/>
 </Sequence>
</Section>
</ElementDef>

As stated in the comment line of the example above, minOccurs is always 0 and

maxOccurs is always 1 for the EndnoteType element, so these values do not need to

be specified. Also, a particular Endnote definition can only be referenced once.

Note that if the schema contained a second Endnote definition for use with table

notes (so that a document could have endnotes and table notes), a second

EndnoteType element would be needed to refer to the second Endnote definition.

InsertEndNote InternalClass

The final component needed is the InsertEndNote internal class, which is discussed

in section 5.34. The example given below references the EmphasisDef defined as an

example in section 14.8.1, above.

<InternalClass name=”InsertEndNote” emphasisName=”en”/>

If table notes were implemented in the same document class, a second InternalClass

would need to be defined in the Extensibility Interface to refer to the table note

emphasis.

Table

See “TableType” for more information.

Prerequisites: You should be familiar with the following sections before proceeding:

<Elements>
 <ElementDef name="title">
 <!-- Element definition data -->

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 239

 </ElementDef>
 <!-- Additional ElementDef elements here -->
</Elements>

ElementDef •

Section •

Para •

Sequence •

Quark XML Author be configured to support tables with and without sections and

tables with and without groups.

See “TableType” for more information.

Prerequisites: You should be familiar with the following sections before proceeding:

<Elements>
 <ElementDef name="title">
 <!-- Element definition data -->
 </ElementDef>
 <!-- Additional ElementDef elements here -->
</Elements>

ElementDef •

Section •

Para •

Sequence •

Quark XML Author be configured to support tables with and without sections and

tables with and without groups.

CALS Exchange Table

OASIS identified a subset of the full CALS table model that had a high probability of

successful interoperability among the OASIS vendor products. This subset is the

CALS Exchange Table Model.

http://www.oasis-open.org/specs/tr9503.html

The table viewed using the View XML feature.

Figure 14‑6: CALS Exchange table stored in Quark XML Author

http://www.oasis-open.org/specs/tr9503.html

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

240 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Table

Many different table definitions have been created to capture a variety of

information. This variety of definitions include tables with and without groups,

sections and columns. The Quark XML Author configuration schema supports the

definition of many standard table variants including CALS Exchange and HTML

tables.

This section assumes that you have a working knowledge of the table structure

(CALS Exchange, HTML, etc.) that you are represent in Quark XML Author

configuration schema. Some structure may be discussed, but for details see their

respective specifications.

The CALS Exchange table uses table to support table.

Figure 14‑7: CALS Exchange Table

In the sample configuration, the “CalsTable” Table supports the CALS Exchange

table.

Figure 14‑8: CalsTable defined

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 241

Figure 14‑9: Configuration-XSD Table definition

Quark XML Author supports the following table elements:

“Groups” •

”Sections” •

“Columns” •

“Rows” •

“Cells” •

“BeforeTable” •

“AfterTable” •

“TableStyles” •

“Templates” •

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

242 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 14‑10: Configuration-XSD Table definition – attributes

Table contains the following attributes:

Table 14‑199: attributes for Table

Table 14‑20: tgroup constraints for Table

section constraints for table

The following constraint attributes may be applied to Table, Tablegroup and

Tablesection elements.

Table 14‑201: section constraint attributes for table

Attribute Name Definition

defaultColumnCount Default number of columns. Valid values are 1-

63.

defaultRowCount Default number of rows.

Attribute Name Definition

insertDeleteColumns Defaults to allow. If set to deny, the user will

not be able to insert or delete columns in the

table.

changeWidth Defaults to allow. If set to deny, the user will

not be able to change column widths in the

table.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 243

Constraints Inheritance Path

Table elements inherit constraint attribute values from their ancestors according to

the following inheritance chain (‘|’ separates siblings):

Table > Group > Column | Section > Row > Cell

In tables without a group defined:

Table > Column | Section > Row > Cell

In tables without sections or a group defined:

Table > Column | Row > Cell

Fixed attribute and tables

The following statement from Table 11‑3: Field Attributes also applies to tables and

table elements.

“Assign the fixed attribute to a AttributeType for an element definition to uniquely

identify the element among sibling elements that have identical xmlname values. “

To support multiple table elements in the same configuration use the fixed

attribute.

For example, to support multiple table definitions in the same configuration make

the tabledef attribute fixed and specify a different tabledef value for each

definition.

This does not have to be applied to configurations with a single table definition.

Documents that contain unconfigured features

In general, documents that contain unconfigured features are still opened, but no

changes pertinent to that feature are allowed. For example, if a document contains

merged cells, but that feature is not configured then the existing merged cells are

rendered, but no future merges are allowed.

Attribute Name Definition

changeBorders Defaults to allow. If set to deny, the user will

not be able to modify the borders in the table.

changeHeight Defaults to allow. If set to deny, the user will

not be able to change row heights in the table.

insertDeleteRows Defaults to allow. If set to deny, the user will

not be able to insert or delete rows in the table.

mergeCells Defaults to allow. If set to deny, the user will

not be able to merge cells in the table.

splitCell Defaults to allow. If set to deny, the user will

not be able to split cells in the table.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

244 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Groups

Quark XML Authors supports table groups. Not all table types use groups.

The CALS Exchange table uses tgroup to support groups.

Figure 14‑11: CALS Exchange Table

In the sample configuration, the “CalsGroup” TableGroupType definition supports

the CALS Exchange tgroup.

Figure 14‑12: Reference of CalsGroup

Figure 14‑13: CALS Exchange Table > tgroup

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 245

Figure 14‑14: CalsGroup defined

The following configuration schema fragment defines the TableGroup.

Figure 14‑15: Configuration-XSD TableGroup definition

Tablegroup Constraints

TableGroup contains the following attributes:

Table 14‑212: attributes for Tablegroup

Attribute Name Definition

defaultColumnCount Default number of columns. Valid values are 1-

63.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

246 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Table elements inherit constraint attribute values from their ancestors according to

the following inheritance chain. See Constraints Inheritance Path for more

information.

Table 14‑223: tgroup constraints for Tablegroup

The following constraint attributes may be applied to Table, Tablegroup and

Tablesection elements.

Table 14‑234: section constraint attributes for tablegroup

Sections

Quark XML Authors supports table sections. Tables may contain a variety of

sections such as header, body and footers sections. Not all table types use sections.

CALS Exchange and HTML tables use sections while DITA Simple tables do not.

Attribute Name Definition

defaultRowCount Defines the default number of rows within this

group of a new instance of a table.

defaultRowHeight Defines the default height of the row within the

group.

Attribute Name Definition

insertDeleteColumns Defaults to allow. If set to deny, the user will

not be able to insert or delete columns in the

tablegroup.

changeWidth Defaults to allow. If set to deny, the user will

not be able to change column widths in the

tablegroup.

Attribute Name Definition

changeBorders Defaults to allow. If set to deny, the user will

not be able to modify the borders in the

tablegroup.

changeHeight Defaults to allow. If set to deny, the user will

not be able to change row heights in the

tablegroup.

insertDeleteRows Defaults to allow. If set to deny, the user will

not be able to insert or delete rows in the

tablegroup.

mergeCells Defaults to allow. If set to deny, the user will

not be able to merge cells in the tablegroup.

splitCell Defaults to allow. If set to deny, the user will

not be able to split cells in the tablegroup.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 247

Header and Body

CALS Exchange Header and Body

CALS Exchange tables use thead to support table header, tbody to support table

body and tfoot to support table footer sections.

Figure 14‑16: CALS Exchange Table > tgroup

In the sample configuration, the “CalsHeading” TableSectionType definition

supports the CALS Exchange thead. The “CalsBody” TableSectionType definition

supports the CALS Exchange tbody.

Figure 14‑17: Reference of CalsHeading and CalsBody sections

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

248 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 14‑18: CalsHeading defined

TableSection

The following configuration schema fragment defines the TableSection.

Figure 14‑20: Configuration-XSD TableSection definition

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 249

Table elements inherit constraint attribute values from their ancestors according to

the following inheritance chain. See Constraints Inheritance Path for more

information.

TableSection contains the following attributes:

Table 14‑245: attributes for Tablesection

This needs to be on TableGroup and TableSection attributes.

The following constraint attributes may be applied to table, tablegroup and

tablesection elements.

Table 14‑256: section constraint attributes for tablesection

Columns

Quark XML Author supports columns, but does not support column-centric tables.

Therefore, HTML colgroup is not supported. Quark XML Author assumes that any

Attribute Name Definition

defaultRowCount Defines the default number of rows within this

section of a new instance of a table.

defaultRowHeight Defines the default height of the rows within

this section.

repeatHeaderRows Boolean. Specifies that the section is a header

section. Specifies whether or not the “repeat

header rows” feature is enabled. Replaces the

deprecated TableHeading Internal Class.

Attribute Name Definition

changeBorders Defaults to allow. If set to deny, the user will

not be able to modify the borders in the

tablesection.

changeHeight Defaults to allow. If set to deny, the user will

not be able to change row heights in the

tablesection.

insertDeleteColumns Defaults to allow. If set to deny, the user will

not be able to insert or delete columns in the

tablesection.

insertDeleteRows Defaults to allow. If set to deny, the user will

not be able to insert or delete rows in the

tablesection.

mergeCells Defaults to allow. If set to deny, the user will

not be able to merge cells in the tablesection.

splitCell Defaults to allow. If set to deny, the user will

not be able to split cells in the tablesection.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

250 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

given table must have at least one column and ignores any constraints that

contradict that requirement.

CALS Exchange uses colspec to support columns.

Figure 14‑21: CALS Exchange table columns stored in Quark XML Author

In the sample configuration, the “CalsColumn” TableColumnType definition

supports the CALS Exchange colspec.

Figure 14‑22: Reference of CalsColumn

Figure 14‑23: CalsColumn defined

The following configuration schema fragment defines the TableColumn.

Column Resize, Split and Merge Feature Requirements

Quark XML Author only supports the column resize, split and merge features if the

following are defined:

splitCell constraint attribute is set to allow. See Table 14‑256: section constraint •

attributes for tablesection.

columns are defined, such as the CALS Exchange colspec •

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 251

the column definition includes an attribute with datatype equals •

tableColumnWidth

at least one of the following type attributes exists: •

tableCellColumnStart, tableCellColumnEnd and tableRowColumnIdentifier. •

See “Table 11‑7: Field Attributes –datatype values for table rows/columns”.

OR

tableCellColumnCount. See “Table 11‑8: Field Attributes – datatype values •

for table cells”. OR

tableCellRowCount. See “Table 11‑9: Field Attributes – datatype values for •

table, group, section”.

resulting table do not exceed the maxCount of either row or columns (applicable •

only for split)

In the sample configuration, merge, split and resize of columns are supported.

Figure 14‑25: configuration for merge, split and resize of columns

The merge feature uses the mergeCells constraint attribute at the table, group and

section levels:

See “Table 14‑201: section constraint attributes for table”.

See “Table 14‑234: section constraint attributes for tablegroup”.

See “Table 14‑256: section constraint attributes for tablesection”.

The merge feature uses the following logic which is based on two patterns. If

tableCellColumnStart and tableCellColumnEnd are defined and

tableRowColumnIdentifier has a unique value, then horizontal merge is permitted

using these three attributes. If not, then Quark XML Author determines if

tableCellColumnCount is defined, and if so, horizontal merge is permitted using

that attribute. The first pattern is considered the CALS pattern while the second is

the HTML pattern.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

252 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

The following summarizes the datatypes needed for the merge feature.

For HTML,

horizontal:

datatype = tableCellColumnCount facilitates colspan •

vertical:

datatype = tableCellRowSpan facilitates rowspan •

<!-- HTML table attributes-->
<AttributeDef name="border" friendly="Border"/>
<AttributeDef name="width" datatype="tableColumnWidth"
visible="false"/>
<AttributeDef name="colspan" datatype="tableCellColumnCount"
visible="false"/>
<AttributeDef name="rowspan" datatype="tableCellRowSpan"
visible="false"/>

For CALS,

horizontal:

datatype = tableCellColumnStart facilitates namest •

datatype = tableCellColumnEnd facilitates nameend •

vertical:

datatype = tableCellRowCount(deprecated, but for backward compatibility set to •

tableCellMoreRows)

datatype=tableCellMoreRows facilitates morerows •

See “Table 11‑8: Field Attributes – datatype values for table cells” for details on

datatypes used by the merge feature.

Pre 4.0 Table Columns

In Quark XML Author version 4.0, if the user creates a table in a Quark XML Author

document and the table configuration contains a column definition then column

elements such as the HTML colspec are created for the table in the document.

However, if a pre-4.0 document is similarly opened, column elements are not

created. Therefore in these pre 4.0 tables, the user will not be able to perform the

following features: column resize, split and merge.

Column Widths

To be able to change the column width, an attribute with datatype equals

tableColumnWidth must be included in the column definition. See Table 11‑9:

Field Attributes – datatype values for table, group, section. And changeWidth must

be set to “allow”. See Table 14‑20: tgroup constraints for Table.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 253

Fit to Window table

A table upon which the user has invoked the AutoFit > Fit to Window feature or the

template contains ‘proportional’ units. The xml for these tables will contain column

widths expressed in ‘proportional’ units as indicated by the trailing asterisk.

Figure 14‑26: example xml for Fit to Window feature

If a table does not allow the user to change column widths, but the user inserts or

deletes columns, then the user will have to use the columns width that the system

calculates after the action.

Fixed Column Width table

A table upon which the user has invoked the AutoFit > Fixed Column Width feature

or the template contains ‘absolute’ units. The xml for these tables will contain

column widths expressed in ‘absolute’ units, such as ‘points’.

Figure 14‑27: example xml for Fixed Column Width feature.

Rows

Some tables store rows in sections. Others store rows at the root of the table.

Some table types use sections to contain rows. Other table types allow rows to exist

without sections at the root of the table. The following applies to both table types.

In the sample configuration, the “CalsRow” TableRowType definition supports the

CALS Exchange row.

Figure 14‑28: Reference of CalsRow in a section

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

254 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 14‑29: CalsRow defined

The following configuration schema fragment defines the TableRow.

Figure 14‑30: Configuration-XSD TableRow definition

TableRow contains the following attributes:

Table 14‑26: attributes for Tablerow

Row Heights

To be able to change the row height width, an attribute with datatype equals

tableRowHeight must be included in the row definition. See Table 11‑9: Field

Attributes – datatype values for table, group, section. And changeHeight must be

set to “allow”. See “Table 14‑201: section constraint attributes for table”.

You may specify the value of changeHeight at each level in the table hierarchy or

allow the setting to be inherited: Table, TableGroup and TableSection. See “Table

14‑20: tgroup constraints for Table” for more information. This is useful if you want

to create different user experiences. For example, you can create a table

configuration where the user can change the height of body rows, but not header

rows.

Attribute Name Definition

defaultRowHeight Defines the default height of the row.

repeatHeaderRows Boolean. Specifies whether or not the “repeat

header rows” feature is enabled.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 255

AutoFit

The AutoFit feature is not available when the selection includes any content outside

of a table.

Cells

First let’s discuss the authoring experience and content structure within a table cell,

then we’ll discuss defining the cell.

Authoring Experience and Content Structure

Many different user experiences can be designed and implemented in Quark XML

Author. This holds true both outside of tables and inside of tables. For example, the

display of structural indicators for various elements can be toggled on and off

(visible attribute = true or false). The display of the table cell structural indicator is

also possible, but in the following example we do not display the indicator. The user

is not able to enter text in the table cell structural indicator.

Figure 14‑31: table cell with visual indicator.

Figure 14‑32: table cell without visual indicator.

The following is an excerpt from the Quark XML Author User Guide. This version of

the product does not display a structural indicator for the Cell element.

User Guide

Authoring in a table cell is similar to authoring on the Word canvas outside of a

table. Add new content in each table cell using Insertion Points. You can think of it

as authoring in a miniature Word canvas. The content structure for this canvas is

the Cell element. A visual indicator for the Cell element is not provided. Regardless,

the Cell element is accessible on the Context Menu > Component Menu.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

256 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 14‑33: An empty cell

If you want a paragraph at the top of the table cell, simply enter the text. In this

situation, the system can be configured to automatically insert a paragraph element

into the Cell element. The system can insert other types of content elements

depending on the configuration. See “Table 14‑278: TableCell Attributes” for more

information on specifying a defaultElement for the TableCell.

Figure 14‑34: A cell with text only

Otherwise, insert the desired element type in the Insertion Point using standard

insert techniques. For example, right-click on the Insertion Point and the Context

Menu of allowed elements is displayed.

Figure 14‑35: Cells support mixed content.

In our example, we select Bulleted List from the Context Menu.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 257

Figure 14‑36: Cells with bulleted list only

The bulleted list is inserted and ready to receive text. We enter “item one”.

Elements inserted in the table cell are children of the Cell.

The content structure for this table is represented as the cell with a child bulleted

list.

Figure 14‑37: The content structure

If later you decide that you need text at the top of the cell, simply insert a

paragraph element in the topmost Insertion Point.

The content structure for this table is represented as the cell with a child paragraph

and a child bulleted list.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

258 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 14‑39: The content structure

Figure 14‑40: CALS table cells with various content types

childTextNodes

The XML of the CALS table in Figure 14‑40 is the following (assumption: nodes are

defined as childTextNodes not Paragraphs. See “Paragraph and ChildTextnode

Elements”) :

-<table id="_dd2f9581...">
-<tgroup cols="3" id="_18fd38aa..">
 <colspec colsep="1"/>
 <colspec colsep="1"/>
 <colspec colsep="1"/>
-<thead id="_98e2fd05...">
-<row rowsep="1" id="_b03e9318...">
 <entry id="_3c18b0a7...">Text (1,1)</entry>
 <entry id="_51f6bb62...">Text (1,2)</entry>
 <entry id="_651ea15a...">Text (1,3)</entry>
 </row>
 </thead>
-<tbody id="_c9cff7c1...">
-<row rowsep="1" id="_cabff024...">
 <entry id="_a0c9557f...">Text (2,1)</entry>
 <entry id="_13f0110c...">Text (2,2)</entry>
 <entry id="_5cf2483a...">Text (2,3)</entry>
 </row>
-<row rowsep="1" id="_7d2ca11c...">
-<entry id="_3eff3aac..">
-<ul id="_7ab1ac56...">
 <li id="_4f9048b1...">bulleted list item

 </entry>
-<entry id="_2b0c3181...">
-<ol id="_7131af6a...">
 <li id="_0edc9e7e...">numbered list item

 </entry>
-<entry id="_0d668949...">
 <image href="C:\Current\camera_back_menu_96dpi.jpg" height="65"
width="122" id="_fab4eff5..."/>
 <p id="_bd16267b...">Text (3,3)</p>
 </entry>
 </row>
 </tbody>
 </tgroup>
 </table>

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 259

Cell Definition Overview

For some tables, cell are defined the same (reusable) no matter whether they are in a

header, body or footer. For other tables, cell definitions are separate and different for

different parent containers.

Reusable Cells Definition •

Body Cell Canvas •

Header Cells •

Cell Canvas •

Table cells may be configured to contain mixed-content such as paragraphs, lists,

and figures. For an example, see the Choice (unbounded) definition in “CALS

Exchange Cells”.

Reusable Cell Definitions

Some table structures use section-specific cells or row-specific cells.

CALS Exchange Cells

If your table structure has sections and the cells within the different section types

are similar, you may be able to create a single cell element definition rather than a

section-specific cell definition. This is the case with the following CALS Exchange

table example.

In the sample configuration, the “CalsEntry” TableCellType definition supports

CALS Exchange entry. CalsRow is referenced by both CalsHeading and CalsBody

effectively reusing “CalsEntry” in both section types. See “CALS Exchange Header

and Body.

Figure 14‑41: Reference of CalsEntry

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

260 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 14‑42: CalsEntry defined

In the sample configuration, the “CellChildTextNode” element definition supports

text capture within CALS Exchange entry. Text-based elements specified as

childTextnodes are typically used for text capture in table cells. See “Paragraph and

ChildTextnode Elements” for more information.

Figure 14‑43: CellChildTextNode defined

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 261

Figure 14‑44: CalsEntry (with attributes) defined

TableCell contains the following attributes:

Table 14‑278: TableCell Attributes

A CALS Exchange cell requires many more attributes to support it than an HTML

cell and about twice as many as the Simple Table cell. Xmlname is different. CALS

has Attributes. HTML does not.

Attribute Required Definition

defaultElement no Specifies the name of the

element that is automatically

inserted if the user tabs to a

table cell and then types (or

pastes text). This should be a

para-type. See “Minimizing

“empty” cells”.

displayAttribute no String. Allows you to specify

that instead of the element

name, the value of the

attribute named will be

displayed to the user. See Table

14‑2: Section Attributes.

displayElement no Boolean. If set to true, the

display name of the element

will be the name of the

element’s first visible child

element. See Table 14‑2:

Section Attributes.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

262 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Minimizing “empty” cells

In order to ensure a consistent and reliable user experience, the system attempts to

ensure that new table cells contain some type of content element rather than create

what are considered “empty” cells. If the table cell is configured with a required

child element then that child element is instantiated or if the table template

included content for the table cell then that content is be placed in the cell. If the

neither of those scenarios are true then the system checks to see if the table cell is

configured with a default element. If so, then the default element is inserted. This

applies whether the user inserted a new table, inserted a new row, tabbed to create a

new row, pasted content, etc. See defaultElement in “Table 14‑27”.

Paragraph and ChildTextnode Elements

Text is a common content type that users desire to enter in table cells. This content

type can be facilitated using two types of content elements: paragraphs and

childTextnodes. These elements are configured as children of the table cell. Both

support portionmarks. See “Portionmarks”.

Table cell elements are containers only and may not have text stored directly on the

cell element. Table cells are strictly containers for child elements. Most table cell

configurations use childTextnodes rather than paragraphs. The user experience for

paragraphs and childTextnodes is similar. See “childTextnode” for a description of

some of the differences.

Quark strongly recommends that your table cell configurations

contain either paragraphs or childTextnodes, but not both. Though a configuration

containing both is technically possible, the resulting user experience could be

confusing. When viewing the list of insertable content, the user would be presented

with both paragraph and childTextnodes. Until the user learned the subtle

differences, this user experience could be frustrating.

The following sample configuration fragment defines a childTextnode within a

TableCell > Choice “unbounded”.

<SectionType name="CellChildTextNode"

insertAfter="CellChildTextNode"/>

The following sample configuration fragment defines a paragraph within a TableCell

> Choice “unbounded”.

<SectionType name="CellPara" insertAfter="CellPara"/>

If you have a business requirement for text-only table cells you

must use childTextnodes. Configurations of text-only tables cells using paragraphs

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 263

are not supported. For example, DITA Choice Table should be configured using

childTextnodes.

The serialization of paragraphs and childTextnodes is different. See “Table 14‑3: Para

Attributes” for more information.

childTextNodes

childTextnodes have the following limitations and differences from a paragraph:

Shift-Enter required to create soft line break •

Adjacent childTextnodes are supported. This allows for the insertAfter attribute •

to be set such that when the user presses Enter in a childTextnode, a sibling

childTextnode is automatically inserted after. See Table 14‑133: SectionType

Attributes for more information on insertAfter. This also allows for automatic

insertion of childTextnode in the tab and type use case. See default Element and

“Table 14‑278: TableCell Attributes” for more information.

The “Change To” feature is supported. See “ChangeToList” for more •

information.

Referencing

Only certain aspects of a table can be configured for referencing in Quark XML

Author.

Configurable:

tables •

paragraphs •

lists •

images •

Not configurable:

groups •

sections •

rows •

columns •

cells •

textnodes •

Cut and Copy

Cut, Copy and Remove is configured the same inside and outside of tables using

standard allowCopy and allowCut attributes. See Table 14‑1: ElementDef Attributes

for more information.

These features will be available when they do not endanger structural integrity. For

example, the user is never allowed to cut a cell from inside of a table.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

264 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Configurations with multiple table types

Special consideration should be taken when creating a configuration with multiple

table types because the user may attempt to paste content from one table to another

table of a different type. The system will allow the paste if the content being pasted

is compatible with respect to the configurations of each table. For example, the user

may not be able to paste header row content into a table that is not configured for

header rows.

Given that the system will deny the user to paste content that is incompatible, the

user guide and training materials should be written to provide guidance to the user

as to why the paste may have been denied and what is allowed for that specific

configuration.

Formatting

Formatting is limited to:

alignment: Table 14‑291: tableStyles attributes group •

borders: Table 14‑291: tableStyles attributes group, Table 14‑302: •

xpressColumnStyleAttributes group, Table 14‑313: xpressRowStyleAttributes

group

orientation: See tableCellContentRotate in “Table 11‑8: Field Attributes – •

datatype values for table cells”

BeforeTable

If you need to define a collection of elements that can exist before a table and are

directly associated with that table, then use BeforeTable. <BeforeTable> is a child

element of <Table>. See Table.

BeforeTable may contain one or more Sequence or Choice elements, which in turn

contain document elements. Each <BeforeTable> node defines a collection of

<Sequence> and <Choice> nodes. These are the same Sequence or Choice elements

that are used to define content elements outside of tables. See Sequence.

Figure 14‑46: Configuration-XSD BeforeTable definition

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 265

Figure 14‑47: BeforeTable defined

Choice

Each <Choice> node defines a collection of content type nodes.

Sequence

Each <Sequence> node defines a collection of content type nodes.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

266 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 14‑49: Configuration-XSD Sequence definition

AfterTable

If you need to define a collection of elements that can exist after a table and are

directly associated with that table, then use AfterTable. <AfterTable> is a child

element of <Table>. See Table.

AfterTable may contain one or more Sequence or Choice elements, which in turn

contain document elements. Each <AfterTable> node defines a collection of

<Sequence> and <Choice> nodes. These are the same Sequence or Choice elements

that are used to define content elements outside of tables. See Sequence.

Figure 14‑50: Configuration-XSD AfterTable definition

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 267

Figure 14‑51: AfterTable defined

Choice

Each <Choice> node defines a collection of content type nodes.

Figure 14‑52: Configuration-XSD Choice definition

Sequence

Each <Sequence> node defines a collection of content type nodes.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

268 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

TableStyles

The <TableStyles> node contains a collection of <TableStyle> child elements that

describe general formatting for tables.

Figure 14‑54: Configuration-XSD TableStyles definition

Table 14‑289: TableStyles Attributes

In the following example, the table style “Basic” is defined. Within the collection of

table styles, “Basic” is also specified as the default style.

Attribute Name Definition

default The name of the default TableStyle.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 269

TableStyle

Each <TableStyle> node defines a <Table> node.

Figure 14‑56: Configuration-XSD TableStyle definition

Table 14‑30: TableStyle Attributes

The name attribute identifies the table style within Quark XML Author as well as to

the user.

In the Insert Table dialog, the name is displayed adjacent to “Table Style:”

indicating the style that was selected by the user in the Table Style dialog. In the

following example, the current table style is “Default”. Note that the Styles button

is not enabled which indicates that only one Table Style is associated with the

“Simple Table” table definition and no other styles are available for selection.

Attribute

Name

Requir

ed
Definition

name yes

The name of the TableStyle. The table element must have a tableStyle

attribute.

<AttributeDef name="myTemplate" datatype=”tableStyle”/>

And in the Template > table definition, set that attribute value to the

name of the style. For example, Template/table@myTemplate=”My

Template”, where TableStyle@name=”My Template”.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

270 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 14‑57: Insert Table dialog displays the current Table Style

In the following example, the Insert Table dialog displays “No Style Selected”. The

user can click Styles and in the Table Style dialog select from the multiple styles

that are available.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 271

Figure 14‑58: Insert Table dialog with no Table Style selected.

The Table Style dialog displays the names of all table styles associated with the

current table definition.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

272 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 14‑59: Table Style dialog displays all styles available

Table

Each <Table> node defines a collection of <Section> nodes and a general formatting

scheme for a table. <Section> nodes define the appearance of heading and body

sections.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 273

Figure 14‑60: Configuration-XSD Table definition

To specify stylistic information for a <Table>, use <tableStyles>,

<xpressColumnStyleAttributes> and <xpressRowStyleAttributes>.

See:

The following stylistic attributes may be applied to the <Table>. See Table for more

information.

Table 14‑302: xpressColumnStyleAttributes group •

The following stylistic attributes may be applied to both the <Table> and <Section>.

See Table and Section, respectively.

Table 14‑313: xpressRowStyleAttributes group

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

274 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 14‑61: Configuration-XSD Table definition

Section

Each <Section> node defines a general formatting scheme for a section.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 275

Figure 14‑62: Configuration-XSD Section definition

To specify stylistic information for a <Section>, use <tableStyles> and

<xpressRowStyleAttributes>.

See:

Table 14‑291: tableStyles attributes group •

Table 14‑302: xpressColumnStyleAttributes group, Table 14‑313: •

xpressRowStyleAttributes group

tableStyles attributes group

The following stylistic attributes may be applied to both the <Table> and <Section>.

See Table and Section, respectively.

Tables may be configured so that the user can specify a background color. This can

be configured at the desired level in the table structure. See backColor.

Tables may be configured so that the user can turn borders on and off. This can be

configured at the desired level in the table structure. See frame.

Table 14‑291: tableStyles attributes group

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

276 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

xpressColumnStyleAttributes group

The following stylistic attributes may be applied to the <Table>. See Table for more

information.

Table 14‑302: xpressColumnStyleAttributes group

Attribute Name Required Definition

backColor no The color name to be applied

to the background.

frame no One of six enumerated values

that specify which, if any, of

the table element’s outer

borders will be displayed. The

enumerated values are:

all. Default. All borders •

will be displayed.

top. Only the top border •

will be displayed.

bottom. Only the bottom •

border will be displayed.

topbot. Only the top and •

bottom borders will be

displayed.

sides. Only the left and •

right borders will be

displayed.

none. No borders will be •

displayed.

frameStyle no Defaults to Single. The line

type to be used for the table

element’s outer borders.

horizAlign no Defaults to left. The default

horizontal alignment of cells

within the given table element.

Valid values are: left, right,

center and justify.

Attribute Name Required Definition

columnBorderColor no
The color name to be applied to the column

border. Defaults to 000000(=black).

columnBorderStyle no

The line type to be used for the table’s column

borders. Defaults to Single. For valid values, see

lineType in the XpressSchema.

columnBorderWidth no Integer. Specifies the width of the column

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 277

xpressRowStyleAttributes

The following stylistic attributes may be applied to both the <Table> and <Section>.

See Table and Section, respectively.

Table 14‑313: xpressRowStyleAttributes group

Templates

The <Templates> node contains one or more <Template> child elements that

describe a table structure that may be inserted into the document. This node has

one attribute: default, the value of which refers to the name of the <Template> child

element that is to be used as the default table template.

Attribute Name Required Definition

border. Defaults to 1px.

Attribute Name Required Definition

rowBorderColor no The color name to be applied to the row border. Defaults

to 000000(=black).

rowBorderStyle no The line type to be used for the region’s row borders.

Defaults to Single. For valid values, see lineType in the

XpressSchema.

rowBorderWidth No Integer. Specifies the width of the row border. Defaults to

1px.

vertAlign no Defaults to top. The default vertical alignment of the

table. Valid values are: top, middle and bottom.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

278 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 14‑63: Configuration-XSD Table > Templates definition

Figure 14‑64: Configuration-XSD Templates definition

Table 14‑324: Templates Attributes

Template

Each <Template> node defines a table structure. The name attribute identifies the

template within Quark XML Author as well as to the user, in the Insert Table

dialog. In the following example, the Inset Table dialog shows that the

“TemplateOne” Template that is associated with the “Table” table definition.

Attribute Name Definition

default The name of the default template.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 279

Figure 14‑65: Insert Table dialog displays the selected table Template

The descendant nodes of <Template> define the structure of the table and the

content types available.

Table 14‑335: Template Attributes

In the following example, the table template “General” is defined. Within the

collection of table templates, “General” is also specified as the default template.

Attribute Name Definition

name The name of the template.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

280 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 14‑66: Templates defined

Tab and type behavior

The system can be configured so that when the user tabs to a table cell and then

types (or pastes text), an element is automatically inserted. The new element

receives the text. Quark recommends using this feature. See “Table 14‑278: TableCell

Attributes” for more information on specifying a defaultElement for the TableCell.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 281

Support for language-specific configurations

At startup, Quark XML Author uses the current Microsoft Office Display Language

to determine which language to use for authoring sessions. Quark XML Author then

loads the appropriate language-specific configuration. To minimize the number of

hard coded strings in the configuration files and software, content that should be

translated has been centralized in standard Microsoft resource files. The directory

structure is shown here:

 UI controls and features

This section of the guide discusses features and the UI controls to which they are

associated. For example, the Find & Replace feature is associated with a menu item,

a toolbar button, a ribbon button and a shortcut key.

The text used to display a given UI control is retrieved from the resources file based

on the name of the InternalClass. You can override this behavior by specifying

attributes such as label and supertip.

For example, in the sample config node, the InternalClass is “Paste”.

<InternalClass name=”Paste” />

Values for the label, screentip, supertip and keytip components are retrieved from

the resource file using the following naming convention for the resource id.

 [InternalClass name]_[component name]

The following figure shows the fragment of the resource file for the components

associated with the “Paste” InternalClass.

Figure 14‑67: installation folder comparison

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

282 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Note that the label and keytip attributes are not used in the config node. Their

values are retrieved from the Core resource file. (These attributes are deprecated, but

backward compatible.) If used these attributes override the Core resource file.

Best Practice: Unless you need to override Core resource values, remove the

attributes so that their values are retrieved from the Core resource file. In other

words, use Core resources and remove uses of label, title, description, keytip, and

screentip.

Best Practice: Id’s should match the InternalClass name as closely as possible. For

example,

 id=”PasteXA” should be id=”Paste”.

The naming convention is actually more robust than previously stated.

 [InternalClass name][Type modifier][component name]

The resource id may require additional text to differentiate it when an

InternalClass has multiple functions. For example, InsertSectionBreak takes the

breakType parameter and is used to create several types of section breaks.

InsertSectionBreakContinuous_label •

InsertSectionBreakNextPage_label •

The following figure displays the “Paste” resources in the UI.

Figure 14‑68: Resources needed for the Paste feature

 <button id="Paste" imageMso="Paste" size="large" >
 <InternalClass name="Paste"/>
 <ShortcutKey key="V" shift="false" ctrl="true"/>
 </button>

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 283

Icons

You can use one of the built in Word icons by setting the imageMso attribute to the

id of that icon.

<button id="Paste" imageMso="Paste" size="large" >
 <InternalClass name="Paste"/>
 <ShortcutKey key="V" shift="false" ctrl="true"/>
</button>

If you need to specify a custom icon, refer to “Custom Icons”.

Context Menus

The Context Menu uses the new language architecture. The Spelling suggestions

that are displayed are provided by standard Word for the current language culture.

The list of insertable elements is derived from the Friendlies specified in the

configuration.

Most of the commands displayed in the ContextMenu come from the following

resource file.

ContextMenu.resx

These resources may not be overridden by professional services. These include

strings like: Change To, Component, Cut, Edit Comment, Insert Cross-reference,

etc.

Resource Files

Only Quark development may add resources to the core resources files. Core

resources are compiled into dynamic link libraries (DLLs) that are distributed with

the application.

Custom resources may be added by Quark professional services and partners to the

custom resource files for (en) and (en-US). Or custom resources may be added to

config nodes using attributes that override resource files.

Resource search order

The following describes the process used by the system to locate a specific resource.

The system determines if a resource file is present and then looks for a resource in

that file. There may be multiple resources available for each language. If the Display

Language is English, the system searches resource files in the following order:

Dept. Responsible Language + Locale Source Distributed

Professional Services en-US

..\en-

US\customUI.resource

s

Professional Services en
..\en\customUI.resour

ces

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

284 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Compiled resources from Professional Services are standalone resource files.

Compiled resources from Development are embedded in the appropriate DLL.

First, the system searches for custom resources specified as local attributes. This is

done for each component that is needed in the current version of Word (label,

screentip, keytip, etc.). If a component was not specified, then the system searches

for custom resources provided by Professional Services. Files are located in the

Quark XML Author installation folder or one its subfolders where noted. The system

searches for a locale specific custom resource and if none is found then searches for

a non-locale specific custom resource. If no custom resources are found the system

searches for core resources provided by Development. The system searches for a

locale specific core resource and if none is found then searches for a non-locale

specific core resource. If none is found the system uses the default resource. The

default resource is the fall back position and if this is not found then an exception is

thrown. The example uses English, but if the Display Language were another

language the resources would be searched in a similar pattern.

Resource Editor

Custom resource files can be edited by professional services with .NET Resourcer. The

download on the website is a CLR 4.0 compatible executable which should NOT be

used for building the CustomUI.resources file. There is a CLR 2.0 specific version of

this available in TFS ($/XML Products/dev/Common/Tools/Resourcer/2.0).

Note: The Lutz resourcer displays culture=neutral for the English version of resource

files. This is not a problem and can be ignored.

Custom Strings

To add a custom string, you must add a custom resource to the following resource

file.

 CustomUI.resources

The following figure shows the resource added for the Paste feature.

Dept. Responsible Language + Locale Source Distributed

Development en-US coreUI.en-US.resx

..\en-

US\XA.core.resources.

DLL

Development en coreUI.en.resx
en\XA.core.resources.

DLL

Development (default) coreUI.resx XA.core.DLL

http://www.lutzroeder.com/dotnet/

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 285

Figure 14‑69: String resources added to CustomUI.resources

Best Practice: For a new feature, add strings for all UI components:

keytip •

label •

screentip •

supertip •

Adding a custom string

To add a custom icon to resources:

In the resource editor, open CustomUI.resources. 1.

Click Edit > Insert Text. 2.

Set the name match the InternalClass as close as possible plus underscore and 3.

then the UI component.

 For example, Paste_label.

Press Tab. 1.

Specify the value of the string. 2.

Click File > Save. 3.

The string is added to the resource.

Custom Icons

The following section discusses how to incorporate custom icons.

Many icons displayed in Quark XML Author are the standard Word built in icons.

However, if you need to specify a custom icon for a Word ribbon button or another

UI control, you must add the custom icon as a resource to the following icon

resource file.

 CustomUI.resources

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

286 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

<button id="DocumentOpen" image="DocumentOpen_image"
insertAfterMso="FileOpen" visible="true">
 <InternalClass name="DocumentOpen" filter="OpenXA2007QA"/>
</button>

Different from strings, the system will search for icons based on an exact match

between the faceId value and the icon id/name in the CustomUI.resources file. In

this example the system will search for “DocumentOpen_image”.

But be aware that the icon resource file from which the icon is retrieved will be the

English specific version of the file.

Adding a custom icon

To add a custom icon to resources:

In the resource editor, open CustomUI.resources. 1.

Click Edit > Insert Files. 2.

Navigate to the folder containing the desired icon file. 3.

Select the icon file. 4.

Click Open. 5.

Select the icon. 6.

Press F2. 7.

Set the name of the icon to match the InternalClass. 8.

 For example, DocumentOpen_image.

Click File > Save. 1.

The icon is added to the resource.

Untouchables

There are some resources that may not be changed.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 287

For example, the string “Empty” (“Vacio” in Spanish).

Modifying file filter resource strings

Filter string syntax

The resource ID identifies a string list of filter types. Each filter type comprises two

parts: the filter text and the filter definition, which are separated by the pipe

character (|).For example, to specify a filter to create a html rendition, you would

use the pair shown below as the value of the “HTML Rendition” resource ID:

HTML Rendition = HTML Document (*.html)|*.html

A filter type is comprised of two parts:

filter UI label •

filter definition •

In a string that represents a filter type, the filter UI label and filter definition are

separated by a pipe (|) character.

For example,

 HTML Document (*.html)|*.html

Filter types may contain one or more file extensions. Extensions are separated by a

semicolon character. These are the file extensions that Windows will search for and

display in the dialog or form.

For example,

Tag Image File Format (*.tif; *.tiff) |*.tif;*.tiff

The Open and Save dialogs contain a list box of filters types and therefore expect

you to provide this list in a string. Filter types are separated by a pipe (|) character.

The following is an example of a string containing two filter types. Typically these

strings are stored as string resources.

 Graphics Interchange Format (*.gif)|*.gif|Tag Image File Format (*.tif; *.tiff)|*.tif;*.tiff

Best practice

For the various Open and Save operations, strings that contain lists of filter types are

stored as resource strings. Resource string exists in XML Author’s embedded CoreUI

resource table and also is stored in the CustomUI.resources file.

When modifying one of these string resources, care must be taken to preserve

proper formatting. These strings can be difficult to read as a single long flowing line,

therefore it is recommended that you restructure a string into its components with

one component per line. The following procedure describes the best way to do this.

Launch a text editor that you can use to edit the string.

Open the CustomUI.resources file using resourcer.

Locate and copy the desired file filter resource.

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

288 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Paste the resource string into the text editor.

[ORIGINAL STRING]

All Pictures

(*.emf;*.wmf;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.tiff;)|*.emf;*.w

mf;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.tiff;|Windows Enhanced

Metafile (*.emf)|*.emf|Windows Metafile (*.wmf)|*.wmf|JPEG File Interchange

Format (*.jpg; *.jpeg; *.jfif; *.jpe)|*.jpg;*.jpeg;*.jfif;*.jpe|Portable Network Graphics

(*.png)|*.png|Windows Bitmap (*.bmp; *.dib; *.rle;)|*.bmp;*.dib;*.rle|Graphics

Interchange Format (*.gif)|*.gif|Tag Image File Format (*.tif; *.tiff)|*.tif;*.tiff

For each pipe ‘|’ character, place the cursor to the left of the pipe character and

press Enter so that each component is on a separate line.

For example,

[INITIAL FORMATTING]

All Pictures

(*.emf;*.wmf;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.tiff;)

|*.emf;*.wmf;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.tiff;

|Windows Enhanced Metafile (*.emf)

|*.emf

|Windows Metafile (*.wmf)

|*.wmf

|JPEG File Interchange Format (*.jpg; *.jpeg; *.jfif; *.jpe)

|*.jpg;*.jpeg;*.jfif;*.jpe

|Portable Network Graphics (*.png)

|*.png

|Windows Bitmap (*.bmp; *.dib; *.rle;)

|*.bmp;*.dib;*.rle

|Graphics Interchange Format (*.gif)

|*.gif

|Tag Image File Format (*.tif; *.tiff)

|*.tif;*.tiff

In the next formatting step we will align the filter elements to clearly show how

each filter is constructed.

[COMPLETED FORMATTING]

All Pictures

(*.emf;*.wmf;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.tiff;)

 |*.emf;*.wmf;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.tiff;;

|Windows Enhanced Metafile (*.emf)

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 289

 |*.emf

|Windows Metafile (*.wmf)

 |*.wmf

|JPEG File Interchange Format (*.jpg; *.jpeg; *.jfif; *.jpe)

 |*.jpg;*.jpeg;*.jfif;*.jpe

|Portable Network Graphics (*.png)

 |*.png

|Windows Bitmap (*.bmp; *.dib; *.rle;)

 |*.bmp;*.dib;*.rle

|Graphics Interchange Format (*.gif)

 |*.gif

|Tag Image File Format (*.tif; *.tiff)

 |*.tif;*.tiff

Removing support for a file type:

In the following example, let’s remove support for Tag Image File Format (*.tif,*.tiff)

files.

Remove the individual ‘Encapsulated PostScript’ filter.

DELETE THIS LINE | Tag Image File Format (*.tif; *.tiff)

DELETE THIS LINE |*.tif;*.tiff

Remove the tif file specification from the ‘All Pictures’ filter.

EDIT THIS LINE All Pictures

(*.emf;*.wmf;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;)

EDIT THIS LINE

|*.emf;*.wmf;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;

Adding support for a file type:

In the following example, let’s add support for compressed Windows Metafiles

(*.EMZ and *.WMZ)

Add entries for EMZ and WMZ files to the ‘All Pictures’ filter.

EDIT THIS LINE All Pictures

(*.emf;*.emz;*.wmf;*.wmz;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.tif

f;)

EDIT THIS LINE

|*.emf;*.emz;*.wmf;*.wmz;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.tiff

;

A entries to each of the Windows Metafile filters.

EDIT THIS LINE |Windows Enhanced Metafile (*.emf;*.emz;)

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

290 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

EDIT THIS LINE |*.emf;*.emz;

EDIT THIS LINE |Windows Metafile (*.wmf;*.wmz;*)

EDIT THIS LINE |*.wmf;*.wmz;*

After adding and/or editing each of the appropriate filters, examine the results.

Note that the file specifications are still aligned with their corresponding filter

descriptions. We are now ready to restructure the components into single filter

string by deleting all of the carriage returns that we added.

[POST EDIT RESULTS]

All Pictures

(*.emf;*.emz;*.wmf;*.wmz;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.tif

f;)

|*.emf;*.emz;*.wmf;*.wmz;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.tiff

;

|Windows Enhanced Metafile (*.emf;*.emz;)

 |*.emf;*.emz;

|Windows Metafile (*.wmf;*.wmz;*)

 |*.wmf;*.wmz;*

|JPEG File Interchange Format (*.jpg; *.jpeg; *.jfif; *.jpe)

 |*.jpg;*.jpeg;*.jfif;*.jpe

|Portable Network Graphics (*.png)

 |*.png

|Windows Bitmap (*.bmp; *.dib; *.rle;)

 |*.bmp;*.dib;*.rle

|Graphics Interchange Format (*.gif)

 |*.gif

|Tag Image File Format (*.tif; *.tiff)

 |*.tif;*.tiff

Left align each filter element and remove blank lines as shown here.

[LEFT ALIGNED]

All Pictures

(*.emf;*.emz;*.wmf;*.wmz;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.tif

f;)

|*.emf;*.emz;*.wmf;*.wmz;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.tiff

;

|Windows Enhanced Metafile (*.emf;*.emz;)

|*.emf;*.emz;

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 291

|Windows Metafile (*.wmf;*.wmz;*)

|*.wmf;*.wmz;*

|JPEG File Interchange Format (*.jpg; *.jpeg; *.jfif; *.jpe)

|*.jpg;*.jpeg;*.jfif;*.jpe

|Portable Network Graphics (*.png)

|*.png

|Windows Bitmap (*.bmp; *.dib; *.rle;)

|*.bmp;*.dib;*.rle

|Graphics Interchange Format (*.gif)

|*.gif

|Tag Image File Format (*.tif; *.tiff)

|*.tif;*.tiff

Join all of the components into a single line. Make sure that all but the very first

line have a pipe ‘|’ character at the beginning of the line prior to joining. Note that

the following line may be wrapped, but is a single line of text.

[REASSEMBLED FILTER STRING]

All Pictures

(*.emf;*.emz;*.wmf;*.wmz;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.tif

f;)|*.emf;*.emz;*.wmf;*.wmz;*.jpg;*.jpeg;*.jfif;*.jpe;*.png;*.bmp;*.dib;*.rle;*.gif;*.tif;*.t

iff;|Windows Enhanced Metafile (*.emf;*.emz;)|*.emf;*.emz;|Windows Metafile

(*.wmf;*.wmz;*)|*.wmf;*.wmz;*|JPEG File Interchange Format (*.jpg; *.jpeg; *.jfif;

.jpe)|.jpg;*.jpeg;*.jfif;*.jpe|Portable Network Graphics (*.png)|*.png|Windows

Bitmap (*.bmp; *.dib; *.rle;)|*.bmp;*.dib;*.rle|Graphics Interchange Format

(*.gif)|*.gif|Tag Image File Format (*.tif; *.tiff)|*.tif;*.tiff

The final step is to update the resource file.

copy the edited file filter string in the text editor and paste in back to

CustomUI.resources and save the resource file.

Extensibility Methods

With some elements, you may want to provide a way for users to access a tool such

as a metadata wizard via a command in the context menu. An element definition

may use an extensibility method to provide this functionality.

The syntax for using Extensibility Methods is shown below:

<ExtensibilityMethods>
 <ExtensibilityMethod id="method name" friendly="friendly name"
showInComponentContextMenu="true or false"
showInContextMenu="true or false" faceID="#"/>
</ExtensibilityMethods>

Table 14‑346: ExtensibilityMethod Attributes

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

292 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Attribute Name Required Definition

enableXpath no Value is a Boolean XPath

expression which evaluates to

a node-set in which false is

returned for an empty node-set

and true otherwise. When

applied to the runtime

element, indicates whether to

enable the method on the

Context Menu.

Namespaces are not supported

in the xpath syntax.

For the Ribbon, enableXpath

on evaluates against root

notes. Against current node is

not supported.

faceID no Allows you to specify an icon

that will be displayed next to

the context menu item. The

value of faceId is an integer

corresponding to the ID

number of an icon in the Word

template FaceID.dot.

friendly no Specifies a name for the

context menu command.

id yes Specifies the ID of the EI

method to be called.

showInComponentContextMe

nu

No Defaults to true. When set to

false, the command will not

appear in the Component

context menu.

showInContextMenu No Defaults to true. When set to

false, the command will not

appear in the main context

menu, but may still appear in

the Component context menu

if

showInComponentContextMe

nu is set to true.

showXPath no Value is an XPath expression

which evaluates to a node-set,

and when applied to the

current element, indicates

whether to include the method

on the context menu: if a

node-set is returned, the

method is included; if an

QUARK XML AUTHOR STRUCTURE ELEMENT DEFINITION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 293

See Section 6 for more information on how to configure Extensibility Interface

methods.

Attribute Name Required Definition

empty node-set is returned, the

method is omitted. When

applied to the runtime

element, indicates whether to

include the method on the

Context Menu. The XPath

expression is applied to the

XOM therefore the names are

XOM element names. The

XPath expression will be

evaluated against the current

runtime element and thus

must be relative to it.

Namespaces are not supported

in the xpath syntax. For

example,

showXPath=”self::node()[local-

name()=’Section’]”.

XML Author does not support

dynamic show/hide of Ribbon

items, therefore showXPath is

not applicable for Ribbon

items.

STARTER DOCUMENTS AND TEMPLATES

294 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Starter Documents and Templates

For each document class you define, a “Starter Document” must be created that

contains the basic root element of the document. We call them “Starter Document”

rather than “template” to distinguish these files from the Word Templates that must

also be created for each document class. Both files are discussed in this chapter.

This must be done for each language culture in which you are creating solutions.

Starter Document

The Starter Document is an XML document, and so must begin with an XML

declaration. The XML declaration may also be followed by a Processing Instruction

(PI) node that identifies values for certain items of document metadata.

The PI node must be named Xpress, and takes the following format:

<?Xpress attribute="value" attribute2="value2"?>

It would, of course, have as many or as few attributes as your organization’s needs

require. Later, as the document is edited and revised, your content management

system may insert additional attributes. Quark XML Author will retain whatever

attributes and values are placed in this node, but will only look for and process the

value of one attribute: AccessMode. If this attribute is not present, the AccessMode

will default to Author, but if the AccessMode is present, Quark XML Author will

open the document in whatever mode is specified by its value.

Quark XML Author provides two built-in PI attribute: productLine and

accessMode. Both are optional. The first can be used to identify the document class,

and its value must match the value of a productLine attribute in an AppConfig file

namespace node. The latter, accessMode, would define the level of access for the

document as a whole. See section 5.54 for more information on access modes.

Document Content

The Starter Document’s root node is the root node defined in the XAS. Within that

root node, any required elements must also be defined, and any of their required

child elements must also be defined, and so on. For example, if a Chapter root node

required a Title and at least one Section, which in turn must contain at least one

Paragraph, you would need to define all four of these elements, and the starter

document might look something like the example shown below.

<?xml version="1.0" encoding="UTF-8" ?>
<Chapter>
 <Title>Your Title Here</Title>
 <Section>

STARTER DOCUMENTS AND TEMPLATES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 295

 <Paragraph>Default first paragraph</Paragraph>
 </Section>
</Chapter>

Of course, this is a very simple structure that doesn’t take into account attributes—

any mandatory attributes for these elements would also need to be added, with

default values supplied.

Namespace

In addition to any attributes that may be required by the schema, the root element

may also have default or prefix namespace attributes.

DOCTYPE declarations

Quark XML Author provides the following support for DTD DOCTYPE declarations

within Quark XML Author documents.

External

Externally referenced DOCTYPES are fully supported. We support addition of an

externally referenced doctypes in documents not for validation purposes. There are

2 reasons for including DocType declarations in a XML document from a XML

Author perspective:

Using entity declarations that might be declared in those DTDs. 1.

Using default values for attributes that might be used in those DTDs 2.

Internal

Quark XML Author supports a subset of the full language specification for internal

DOCTYPE declarations.

A declaration must be valid in terms of XML syntax.

Comments are not allowed within the DOCTYPE declaration.

Only the !ENTITY definition is supported. Definitions such as such as !ELEMENT or

!ATTLIST are not supported.

If Quark XML Author encounters an unsupported DOCTYPE declaration, the system

will prompt the user with error message stating that the document cannot be

opened.

The Quark XML Author parsing logic does support additional aspects of DOCTYPE

declaration. If you have a question about whether or not your declaration is

supported, please contact technical support.

Microsoft Word Templates

In Word, the ribbon interface is defined by the <Ribbon> node in the AppConfig

and DocConfig files, rather than via Word templates. The global template is not

used. The document-level template (.dotx file) is necessary to contain paragraph

STARTER DOCUMENTS AND TEMPLATES

296 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

styles that the document class will use, but no special tool is needed to create this

Word template.

If your Styles button is not available, see “Enabling the Styles button in standard

Word”.

Preparing to Use TemplateManager

For each culture, several things must be done before using TemplateManager:

Prepare AppConfig.xml. Menus and CommandBars defined in AppConfig.xml •

will be used to create Xpress.dot.

Prepare a DocConfig file for each document class. Menus and CommandBars •

defined in the DocConfig files will be used to create the document class Word

templates.

Close all instances of Word running on the computer. If Outlook is configured to •

use Word as the email editor, you must also close Outlook.

“Removing temporary files” •

Place TemplateManager.exe and its support files in the Quark XML Author •

application folder. The support files are:

“CollectControls.exe” •

Quark.XA.TemplateUtil.exe •

Quark.XA.TemplateUtliLib.dll •

Set the Microsoft Office culture to the culture of the configuration. •

“To Launch TemplateManager” •

“Removing temporary files again” •

Removing temporary files

To ensure that all temporary template information is removed:

IMPLEMENTER:

Close all winword processes

Go to %AppData%\Microsoft\Templates\

 Del Normal.dot

 Del ~*.dot

Close all winword processes

Go to Application installation folder\

 Del Wxyz.dot

 Del ~xyz.dot

END USER:

Close all winword processes

STARTER DOCUMENTS AND TEMPLATES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 297

Go to %AppData%\Microsoft\Templates\

 Del Normal.dot

 Del ~*.dot

Go to …\Program Files\Microsoft Office\Templates\{folder#}

Where {folder#} equals the desired language:

1033 = English •

3082 = Spanish •

1041 = Japanese •

1036 = French •

 Del ~*.dot

Go to …\Program Files\Quark XML Author\{language}

 Del ~*.dot /s

Go to …\Program Files\Quark XML Author\{language}\{solution name (i.e.

BUSDOCS)}

 Del ~*.dot /s

If you are upgrading from a previous version of Quark XML Author, you may also

want to verify that Normal.dot does not include legacy, unused menu items. If it

does, rename Normal.dot and then open and close Word so that it creates a default

Normal.dot file.

Once you have performed all these tasks, you are ready to run TemplateManager

and create the Quark XML Author templates for a given culture. Afterwards, be sure

to “Removing temporary files” as the final step.

CollectControls.exe

This utility is used to find the ControlIds for various functions in Word for use in

the docConfig.

1. Specify the function in Filter.

2. Click Show Ids.

The IDs for the specified function are displayed.

For example, for “print”, the following figure shows the IDs available. If you wanted

Print on the File menu, the ID is 4.

STARTER DOCUMENTS AND TEMPLATES

298 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 15‑1: Collect Controls utility

To Launch TemplateManager

To launch TemplateManager:

Set the Microsoft Office culture to the culture of the configuration. 1.

Right-click on TemplateManager.exe. In the shortcut menu, click Run as 2.

administrator.

In the Select Language dialog, select the language of the culture and 3.

configuration.

Click OK. The XML Author Template Utilityapplication displays. 4.

Select the Application Config tab. 5.

STARTER DOCUMENTS AND TEMPLATES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 299

Application Config Tab

Figure 15‑2: TemplateManager Application Configuration Window

The Application Config tab is displayed. The Configured Namespaces list is

populated with each pre-configured namespace in the AppConfig Namespaces node

Edit Pre-Configured Namespace

To edit a pre-configured namespace, select it in the list. Make any changes necessary

in the following fields: Schema, Template, Transform, Mapper Assembly, and

Mapper Class. Click OK to commit the changes to the AppConfig file.

Add a Namespace

You can add new namespace configurations to the AppConfig file on the

Application Config tab. Click Add to display the Add Namespace window (Figure

15‑3).

STARTER DOCUMENTS AND TEMPLATES

300 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 15‑3: Add Namespace Window

Complete the form and click OK. Changes are not be committed to the AppConfig

file until you click OK on the main window.

Remove a Namespace

To remove a namespace, select it in the list and click Remove. A confirmation

message will be displayed. Click Yes to delete the namespace. Click No to cancel the

operation.

Create Xpress.dot

Once you have made any namespace changes necessary, click Generate Global

Template. A window will be displayed that lists the changes being made (Figure

15‑4) to Normal.dot and Xpress.dot will be created. Word will open with the

Xpress.dot template active. Click OK to save the template and close the Activity

window. If are editing Xpress.dot, you will have to close the template manually;

otherwise, the template closes automatically.

STARTER DOCUMENTS AND TEMPLATES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 301

Figure 15‑4: Template Under Construction

New and reprogrammed menu items and toolbar buttons specified in AppConfig

will be placed at the bottom of menus and the far right of toolbars. Open Xpress.dot

in Word, select Tools > Configure, and move these items to the proper locations. For

example, if you have replaced Word’s Open functionality with Quark XML Author’s

functionality, you’ll need to move the Open button on the Standard toolbar back to

its customary place. When done, save and close Xpress.dot

Document Config Tab

Use the Document Config tab to create and modify document class templates. To

work with a document class, select the appropriate namespace in the Configured

Namespace list on the Application Config tab, then click the Document Config tab.

STARTER DOCUMENTS AND TEMPLATES

302 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 15‑5: Document Config Tab

Create Template

To create the document template, check the Replace Top Level Menus checkbox and

click Create Template. The template will be created with the name specified in the

namespace declaration and will be placed in the directory specified. Word will open

the template. Save and close the template.

Edit Template

To edit an existing template, click Edit Template. The template will open. Use the

Create Control panel to create new controls. Make sure the Name matches the

resourceId name for the control in the configuration file. When you click Create,

the new control will be added to a temporary toolbar. Move it to the proper location

before saving and closing the template.

Final Step

Remove temporary files again. See “Removing temporary files”.

Setting the Proofing Language

You can set the default proofing language of the XML Author template to account

for different cultures. For example, you may need to change the language from US

English to United Kingdom English.

STARTER DOCUMENTS AND TEMPLATES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 303

1. Open the template in a package editor (for example oXygen), or you can

rename the template to .zip and extract the file you want to change.

2. Open word/styles.xml

3. Change the lang@val to the desired language. For example, in the figure

below, set lang@val to “en-GB”.

Figure 15‑6: Setting the Proofing Language

Word: New templates

For Word solutions, when you create a new template, extraneous style information

causes an issue in Quark XML Author smart paste feature. This causes the paste

feature, to use global styling information instead of local styling information.

To remove the style information:

Use the Word Save As feature to save the .dotx Word Template file as a .dot 1.

Word 2003 Template file.

Use the Word Save As feature to save the .dot Word 2003 Template file back to a 2.

.dotx Word Template file.

The extraneous style information is removed from the template.

Technical details

This section provides the technical details on the “new template” issue described in

the preceding section.

This issue is happening because there is an overriding default paragraph property

being applied at the document level. The following is a snippet of the styling node

from a sample dotx:

STARTER DOCUMENTS AND TEMPLATES

304 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

<pkg:part pkg:name="/word/styles.xml"
pkg:contentType="application/vnd.openxmlformats-
officedocument.wordprocessingml.styles+xml">
<pkg:xmlData>
 <w:styles
xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/re
lationships"
xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/
main">
 <w:docDefaults>
 <w:rPrDefault>
 <w:rPr>
 <w:rFonts w:asciiTheme="minorHAnsi"
w:hAnsiTheme="minorHAnsi" w:eastAsiaTheme="minorHAnsi"
w:cstheme="minorBidi" />
 <w:sz w:val="22" />
 <w:szCs w:val="22" />
 <w:lang w:val="en-US" w:eastAsia="en-
US" w:bidi="ar-SA" />
 </w:rPr>
 </w:rPrDefault>
 <w:pPrDefault>
 <w:pPr>
 <w:spacing w:after="200" w:line="276"
w:lineRule="auto" />
 </w:pPr>
 </w:pPrDefault>
 </w:docDefaults>
 <w:latentStyles w:defLockedState="0"
w:defUIPriority="99" w:defSemiHidden="1" w:defUnhideWhenUsed="1"
w:defQFormat="0" w:count="267">

A default paragraph property is being applied to any paragraph that doesn’t have a

pPr.

The following explanation is from the OpenXML SDK documentation:

docDefaults (Document Default Paragraph and Run Properties)

This element specifies the set of default paragraph and run properties which shall be

applied to every paragraph and run in the current WordprocessingML document.

These properties are applied first in the style hierarchy; therefore, they are

superseded by any further conflicting formatting, but applied if no further

formatting is present.

If this element is omitted, then the document defaults shall be application defined

by the hosting application.

Consider the following definition for the document defaults for a

WordprocessingML document:

<w:docDefaults>
 <w:pPrDefault>
 <w:pPr>
 <w:jc w:val="center"/>
 </w:pPr>
 </w:pPrDefault>
 <w:rPrDefault>
 <w:rPr>
 <w:b/>
 </w::rPr>
 </w:rPrDefault>
</w:docDefaults>

http://schemas.openxmlformats.org/officeDocument/2006/relationships
http://schemas.openxmlformats.org/officeDocument/2006/relationships
http://schemas.openxmlformats.org/wordprocessingml/2006/main
http://schemas.openxmlformats.org/wordprocessingml/2006/main

STARTER DOCUMENTS AND TEMPLATES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 305

The child elements of docDefaults specify a default paragraph property of centered

text and a default run property of bold text. Consider what happens when this

formatting is applies to the following fragment from the main document part of the

same document:

<w:body>
 <w:p>
 <w:r>
 <w:t>Hello world!</w:t>
 </w:r>
 </w:p>
</w:body>

This paragraph contains no formatting properties; therefore, using the style

hierarchy, the document default paragraph and run properties are applied as

specified within the docDefaults element, and the resulting paragraph is centered

as specified in the jc element as well as bold as specified via the b element.

Here is an example of the OpenXML that we paste for an intra-para paste:

<w:p>
 <w:r>
 <w:rPr />
 <w:t xml:space="preserve">two </w:t>
 </w:r>
</w:p>

The OpenXML does not contain a pPr node. This is done so that the content being

pasted “inherits” the styling of the target paragraph. But apparently having this

default pPr in the docDefaults node overrides that and applies this global styling

which is undesirable. The solution is to remove the highlighted pPr node from the

dotx which is accomplish by the workaround described in the preceding section.

Converting Word 2003 configurations to the latest supported version

Converting Word 2003 configurations to the latest supported version 1.

Enabling the Styles button in standard Word

Occasionally and for reasons unrelated to Quark XML Author, the standard Word

Styles button can become unavailable.

To enable the Styles button:

Close all instances of Word if it is open. 1.

Launch Regedit. 2.

In Regedit, go to the following location: 3.

\HKEY_CURRENT_USER\Software\Microsoft\Office\12.0\Word\Data

STARTER DOCUMENTS AND TEMPLATES

306 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

At that location, delete “Toolbars”. 4.

Close Regedit. 5.

Open Word. 6.

The Styles button is available.

STRUCTURED AUTHORING

QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN GUIDE |

Structured Authoring

This section explores structured authoring and constrained authoring and how the

user interacts with a document, its structure, components and elements. Working

with simple text may be discussed occasionally, but the primary focus is on working

with elements.

Quark XML Author versions 4.0 and later allow for mixed content in table cells.

Occasionally the behavior of actions upon a given content type are different

depending on whether the element is located outside or inside of a table. These

differences are noted where applicable.

Some content features act different depending on whether the content element is

inside or outside of a table. These differences are discussed in the applicable

sections.

Deleting Content Elements and Structure

Deleting content in a structured authoring tool can be significantly different than in

Microsoft Word. Deleting simple text is the same in both. But when working with

elements, specific behaviors and rules for delete are needed in order to ensure the

integrity of an XML document and its structure.

Most content in a standard Word document is not required and therefore may be

deleted. However, most XML schemas have some required content. A schema may

define a parent element with a required child element that may not be deleted.

Some content elements have required elements regardless of the schema. For

example, a bulleted list requires at least one item and a table requires at least one

row or column or cell. Therefore, the Component Cut, Remove and Delete features

are unavailable in these scenarios or the feature may delete a parent (or ancestor)

element.

This applies to the delete feature in Quark XML Author that is executed through the

Component Cut, Delete and Remove commands. And, this applies whether the

commands are executed via the toolbar, Context Menu or shortcut keys.

Backspace and Delete in Structured Authoring

The behavior of the Backspace and Delete keys depends on what is currently

selected and the location of the cursor. The behavior is also controlled by structured

authoring rules. See “Deleting Content Elements and Structure”.

The following applies to content both outside and inside of tables.

STRUCTURED AUTHORING

308 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Selection Exists

If the selection contains only text, the text is deleted.

If the selection contains only optional elements, the optional elements are deleted.

Outside of Tables: If the selection contains any required elements, the optional

elements are deleted and text in the required elements is deleted.

Inside of Tables: If the selection contains any required elements, the optional

elements are deleted and text in the required elements is deleted. This applies to

selections that span any table element such as cells, rows, sections, etc.

For a paragraph type cell, an empty paragraph remains. For other cell types, an

insertion point remains.

No Selection

In these use cases, the cursor is within an element, but nothing is selected. The

cursor is not in an insertion point or Empty.

Pressing the Backspace key will delete text until no text remains to the left of the

cursor.

In an optional element, pressing the Backspace key at the leftmost cursor position

merges the text with previous element and deletes the current element. This also

applies when the current element is a list item.

In a required element, pressing the Backspace key at the leftmost cursor position

does not cause a change.

Pressing the Delete key deletes text until no text remains to the right of the cursor.

Pressing the Delete key at the rightmost cursor position does not cause a change.

Entering / Pasting Text - Advanced

The behavior of the typing and pasting text depends on what is currently selected.

If the selection only includes text within a single element, that selection is replaced

with the character typed or the text that is pasted. The selection can include all text

of that single element.

If the selection includes more than one element and a printable character is typed

or text is pasted, no change occurs.

Typing in an Empty

When the user types in an Empty, the system uses the insertAfter setting of the

previous element. See “Table 14‑2: Section Attributes.” If there are no previous

sibling elements, then the parent element setting is used. For example, the first

visible Emptyy in a table cell. See “Paragraph and ChildTextnode Elements”.

Tab in Structured Authoring

The following describes the behavior of the Tab key and various Tab key

combinations within the Quark XML Authoring experience. This applies to para-

STRUCTURED AUTHORING

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 309

type elements: heading, paragraph, list, etc. The behaviors are organized by inside

of tables and outside of tables.

Table 16‑1: Tab Behavior Outside of Tables

Table 16‑2: Tab Behavior Inside of Tables

When the cursor or selection is in the rightmost bottom-most cell, the Tab behavior

is to “add a row”, if the configuration permits that action.

Cut, Copy, Paste in Tables

This section discusses rules and behaviors for cut, copy and paste in tables. The

integrity of the document structure must be maintained the same inside of tables as

it is outside.

General

Whether an element can be pasted requires that the definition of the element and

it’s children definitions are compatible with the definition of the destination

element. There may be ancestor definitions that prevent paste. For example, the

user cannot paste a row into a header row definition with max occurs of 1. This

general statement holds true whether you are pasting content into a table cell from

outside a table, pasting content outside a table from a table cell, or pasting table cell

to table cell.

Key Press cursor or selection starts at

beginning of paragraph

cursor or selection DOES NOT

start at beginning of paragraph

Tab increase indent (if configured);

otherwise insert tab

insert tab

Shift+Tab decrease indent (if configured);

otherwise no action

no action

Ctrl+Tab insert tab insert tab

Ctrl+Shift-Tab no action no action

Key Press cursor or selection contained within 1 cell

(NOT rightmost bottom-most cell)

Tab navigate to next cell

Shift+Tab navigate to previous cell

Ctrl+Tab insert tab (if within 1 para-type);

otherwise no action

Ctrl+Shift+Tab no action

STRUCTURED AUTHORING

310 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Pasting Table Elements

This is an advanced discussion of the Paste table elements feature. Table elements

have been placed on the clipboard using either the cut or copy table element

feature.

The Paste table elements features functions differently depending on several factors.

Are any table elements selected at the paste location? If table elements are selected,

are the dimension of the selection different than the dimensions of the table

elements you are pasting?

The discussion is organized into the following sections:

pasting into a selection •

pasting without a selection •

Pasting Table Elements Into a Selection

When you are pasting into a selection of table elements and the dimensions of the

selection are different than the dimensions of the table elements you are pasting,

then either repeating or truncation of table cells can occur. The following examples

illustrate this logic.

In the first example, the clipboard contains a selection of table cells with the

dimension 3 x 2.

At the paste location, you select 2 cells x 3 cells.

When you paste, the results are as follows.

In the second example, the clipboard contains a selection of table cells with the

dimension 2 x 3.

A1 B1 C1

A2 B2 C2

A1 B1

A2 B2

A1 B1

A1 B1

A2 B2

STRUCTURED AUTHORING

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 311

At the paste location, you select 3 cells x 2 cells.

When you paste, the results are as follows.

Pasting Table Elements Without a Selection

When you are pasting into a selection of table elements and the dimensions of the

selection are different than the dimensions of the table elements you are pasting,

then either repeating or truncation of table cells can occur. The following examples

illustrate this logic.

In the first example, the clipboard contains a selection of table cells with the

dimension 1 x 3 and the content 1, 2, 3.

The paste location is a table with the dimension 1 x 3 and the content A, B, C.

Place the cursor in the first cell of the paste location. The asterisk indicates the

cursor position. No text or table elements are selected.

When you paste, the results are as follows. The content A, B, C becomes 1, 2, 3.

In the second example, the clipboard contains a selection of table cells with the

dimension 1 x 3 and the content 1, 2, 3.

The paste location is a table with the dimension 1 x 3 and the content A, B, C.

A3 B3

A1 B1 A1

A2 B2 A2

1 2 3

A B C

*A B C

1 2 3

1 2 3

A B C

STRUCTURED AUTHORING

312 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Place the cursor in the second cell of the paste location. The asterisk indicates the

cursor position. No text or table elements are selected.

When you paste, the results are as follows. The content B, C becomes 1, 2 and an

additional column is added to the table. This is true no matter how many rows are

in the table at the paste location.

In the third example, the clipboard contains a selection of table cells with the

dimension 3 x 1 and the content 1, 2, 3.

The paste location is a table with the dimension 3 x 2 and the content A, B, C, D, E,

F.

Place the cursor in the second cell of the paste location. The asterisk indicates the

cursor position. No text or table elements are selected.

When you paste, the results are as follows. The content A, B, C becomes 1, 2, 3.

In the fourth example, the clipboard contains a selection of table cells with the

dimension 3 x 1 and the content 1, 2, 3.

A *B C

A 1 2 3

1

2

3

A D

B E

C F

*A D

B E

C F

1 D

2 E

3 F

1

2

3

STRUCTURED AUTHORING

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 313

The paste location is a table with the dimension 3 x 2 and the content A, B, C, D, E,

F.

Place the cursor in the second cell of the paste location. The asterisk indicates the

cursor position. No text or table elements are selected.

When you paste, the results are as follows. The content B, C becomes 1, 2 and an

additional row is added to the table. This is true no matter how many columns are

in the table at the paste location.

Creating Tables from Copied Table Elements

From the Quark XML Author user guide.

The user may insert a table that is filled with table elements that they have already

copied to the clipboard.

You may copy a variety of elements to the clipboard including the following: single

and multiple cells, rows or sections. The copied elements and their content are used

to create a new table at any allowed location. The new table receives a copy of the

metadata of the original table.

If the paste command is not available, this indicates that either a table is not

allowed at this location or that a table is allowed, but the system cannot create a

table at that location, using the copied elements, that is compatible with allowed

table configurations.

“strict XML” execution of Cut and Copy

In Quark XML Author configurations prior to 4.0, the Cut and Copy commands

located in the Component submenu performed a “strict XML” execution of these

commands. In versions 4.0 and later, these commands will execute the same feature

as the Cut and Copy commands at root-level of the Content Menu.

A D

B E

C F

A D

*B E

C F

A D

1 E

2 F

3

STRUCTURED AUTHORING

314 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 16‑1: Component > Row submenu: Cut and Copy commands

Figure 16‑2: Row root-level Context Menu: Cut and Copy commands

Previously the “strict XML” execution of Cut and Copy placed XML on the

clipboard that contained text, string and Unicode, but none of the Quark XML

Author formats. This feature was used to pasted XML into other XML tools.

However, this feature is deprecated in Quark XML Author version 4.0.

Multiple element - Cut, Copy, Paste

The overview and detailed description of this feature is included the user guide and

is the same for each version of the application. This document contains a brief

description as well as some additional details applicable to a configuration engineer.

The Cut, Copy, Paste feature works with selections that include multiple elements

and multiple content types such as text, images and tables. This includes all

metadata and emphasis within the selection as well as child elements.

The Cut and Copy features are supported by:

InternalClass: Ribbon buttons •

Select/Component Context Menus •

Shortcut keys: CTRL + X, CTRL + C, Shift + DEL, CTRL + Insert •

STRUCTURED AUTHORING

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 315

The following provides details about the scenarios and use cases that the Cut, Copy,

Paste feature supports. These are in addition to those listed in the user guide:

Selection of inline text may be pasted as a new element of the same type as the •

source element, if valid.

Selection of complete text element may be pasted as inline text, if valid. •

Selection of a block image may be pasted to replace other block images, if valid. •

Selection of a block image may be pasted to replace an inline content selection. •

Destination selection may contain text, images and/or equations, if valid.

Selection of a block image may be pasted as a new inline image, if valid. •

Selection of block equation may be pasted to replace an inline content selection. •

Destination selection may contain text, images and/or equations, if valid.

Selection of a block equation may be pasted as a new inline equation, if valid. •

Selection of inline content may contain images and/or equations. Selection may

be pasted as a new element of the same type as the source element, if valid.

Selection of an inline image or inline equation may be pasted as a new block •

image/new block equation element. This feature cannot yet be demonstrated

DITA BusDocs, because in the BusDocs configuration the image and equation

element require a Figure wrapper/parent element.

Selection of an inline equation may be pasted to replace an inline equation. •

Selection of an inline equation may be pasted as a new inline equation. •

A single element selection that includes the Empty above and the Empty below will

also invoke the GetComponentId EI, if configured.

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

316 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Integration with Content
Management Systems

Communication with a Content Management System (CMS) for content upload

and download is handled externally from Quark XML Author. Quark XML Author

passes the content and information for handling that content to an external DLL

that performs the upload and download tasks. This chapter explains:

How to configure the Quark XML Author Internal Class SaveToRepository that •

is used to integrate with the external DLL.

The upload interface that the external DLL must implement in order for •

SaveToRepository to communicate with it.

The download interface that the external DLL must expose in order for Quark •

XML Author to be able receive content from the repository.

SaveToRepository

Quark XML Author uses the SaveToRepository Internal Class to call the external

DLL that performs the upload operation. The SaveToRepository internal class is

structured as shown below. Table 17‑1 defines the attributes used for the

InternalClass element.

<InternalClass name="SaveToRepository" nativeFormat="true"
assembly="assemblyName" class="className">
 <Argument type="Tokens">
 <Token>Token Data as needed, one datum per token.</Token>
 </Argument>
 <Argument type="Delegates">
 <Delegate>Delegates as needed.</Delegate>
 </Argument>
</InternalClass>

Table 17‑1: SaveToRepository Attributes

Attribute Required Definition

assembly yes Specifies the file name of the

.NET class library that

implements the upload process

(without the .dll extension).

class yes Specifies the fully namespace-

qualified class name within the

.dll file being called for the

external process

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 317

The InternalClass element is used in the configuration file, usually for the

document class.

Example

Here is an example of how SaveToRepository might be used in a DocConfig file. Like

the other examples in this chapter, it assumes that we are communicating with a

CMS called Tritus.

<MenuItem resourceId="SaveToTritus">
 <InternalClass name="SaveToRepository" assembly="Tritus"
class="fullNamespaceOftheClass.Tritus" nativeFormat="false">
 <Token>enableLogging=true</Token>
 <Token>credentials=windows</Token>
 </InternalClass>
</MenuItem>

The example above maps the SaveToRepository internal class to a menu item. When

the menu item is selected, SaveToRepository will dynamically load the Tritus.dll

assembly and look for the upload() implementation in the specified class. (The

upload() interface is described below). If the assembly or any of its dependencies do

not load or the specified class does not exist or does not implement the upload()

signature, an error message will be displayed and Quark XML Author will not

perform any upload.

Upload() Interface

In order to allow Quark XML Author to check documents into a repository, the

external DLL must implement one of the following interfaces:

bool upload(System.String fileContents, string filename, string[] tokens)

bool upload(System.String fileContents, string filename, string[] tokens, Delegate[]

delegates)

fileContents

The complete XML document that currently has focus. The XML will contain any

changes occurring after the document was opened or last saved locally.

filename

The name of the XML document that currently has focus.

tokens

Attribute Required Definition

name yes Name of the class to be

invoked. In this case,

SaveToRepository.

nativeFormat no Boolean. Defaults to false.

When set to true, Word binary

is included with the document.

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

318 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

A list of tokens that are specified in the InternalClass that calls the upload interface.

(See SaveToRepository on page 92. The string array is made up of the contents of

each of the <Token> nodes specified as a child of the InternalClass node. If no

tokens are provided in the Internal Class, the token array will be null. The tokens

are completely arbitrary and can be any text string that an upload() function needs

in order to execute successfully.

delegates

An optional list of predefined delegates supported by Quark XML Author. Supported

delegates are discussed in section 6.4.

The upload() interface returns a Boolean value which indicates whether an upload

succeeded or failed. For example:

<MenuItem resourceId="SaveToTritus">
 <InternalClass name="SaveToRepository" assembly="Tritus"
class="fullNamespaceOftheClass.Tritus" nativeFormat="false">
 <Tokens>
 <Token>enableLogging=true</Token>
 <Token>credentials=windows</Token>

<Token>webservice=http://soap.tritus.com/schemas/TritusWebService
s.wsdl</Token>
 <Token>iniFileLocation =C:\Program Files\XML
Author\TritusCMS.ini</Token>
 <Tokens>
 </InternalClass>
 <InternalClass name="DocumentClose"/>
</MenuItem>

The menu item shown above has two actions associated with it. Normally, both of

them will execute in sequence when the menu item is clicked, but a return of false

from the upload() method causes any subsequent actions to be ignored. Thus, a

return value of false will cancel the execution of the DocClose event which simply

cancels the closing of the document and keeps it open in Quark XML Author if

upload failed.

Example 1: Upload without delegates

Below is a very simple upload() function that implements the simpler signature:

bool upload(System.String fileContents, string filename, string[] tokens)

It uses a published web service used by the Tritus CMS to perform the upload

function. If there are any other details embedded in the document, we can use that

in the upload function as well. In the example below, the document root has an

embedded id attribute (this id is being assigned by Tritus CMS when it provided the

document), which is extracted and used for the upload.

namespace fullNamespaceOftheClass
{
 public class Tritus
 {
 bool upload(string fileContents, string fileName, string[]
tokens)
 {
 try{
 //These are completely arbitrary and not required.
 //read the tokens - Order of tokens are preserved.

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 319

 bool log = tokens[0].Split('=')[1]].Equals("true"); //to
turn logging on.
 string cred = tokens[1].Split('=')[1]]; //use windows
credentials
 string url = tokens[2].Split('=')[1]]; //web service URL.
 string iniFile = tokens[3].Split('=')[1]]; //This
location will point to any CMS specific information required for
the upload() function.

 //get credentials for access to the CMS
 ICredentials credentials =
CredentialCache.DefaultCredentials; //since the token[1] says
gets windows Credentials

 //read the document to get some details from it.
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(fileContents);
 string id = doc.DocumentElement.GetAttribute("id");
 //if there is no ID we consider this to be a brand new
document, or if there is one if we consider this to be an
existing document.

 Tritus.CMS.WebServices service = new
Tritus.CMS.WebServices();
 sservice.Credentials = credentials;
 int newID = 0;
 if(id ==String.Empty){
 //New document
 newID = service.ImportDocument(fileContents, fileName,
credentials);
 }
 else{
 //Existing document - attempt to invoke the Checkin
webservice.
 newID = service.CheckinDocument(id, fileContents,
fileName, credentials);
 }
 return success;
 }catch(Exception e)
 {
 //Good idea to log any specific log errors.
 //Can be either thrown back to Quark XML Author or a
false return to signify failure
 return false;
 }
 }
 }

}

Example 2: Upload with delegates

The other upload() signature that can be used is:

bool upload(System.String fileContents, string fileName, string[] tokens, Delegate[]

delegates);

 Here is an example of how this signature can be called by a menu item:

<MenuItem resourceId="SaveToTritus">
 <InternalClass name="SaveToRepository" assembly="Tritus"
class="fullNamespaceOftheClass.Tritus" nativeFormat="false">
 <Tokens>
 <Token>enableLogging=true</Token>
 <Token>credentials=windows</Token>

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

320 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

<Token>webservice=http://soap.tritus.com/schemas/TritusWebService
s.wsdl</Token>
 <Token>iniFileLocation =C:\Program Files\XML
Author\TritusCMS.ini</Token>
 <Tokens>
 <Delegates>
 <Delegate>InvokeInternalClass</Delegate>
 </Delegates>
 </InternalClass>
</MenuItem>

An InvokeInternalClass delegate is used inside the InternalClass definition; this

delegate will be passed to the upload() method defined below. (Supported delegates

are discussed in section 6.4.)

bool upload(string fileContents, string fileName, string[]
tokens)
 {
 try{
 //Remember these are completely arbitrary and not required.
If there are no tokens in the config file, tokens will be null.
 //read the tokens - Order of tokens are preserved.
 bool log = tokens[0].Split('=')[1]].Equals("true"); //to
turn logging on.
 string cred = tokens[1].Split('=')[1]]; //use windows
credentials
 string webserviceURL = tokens[2].Split('=')[1]]; //web
service URL.
 string iniFile = tokens[3].Split('=')[1]]; //This location
will point to any CMS specific information required for the
upload() function.

 Invision.Xpress.ExtensibilityDelegates.InvokeInternalClass

invokeInternalClassDelegate = delegate[0] as

Invision.Xpress.ExtensibilityDelegates.InvokeInternalClass;

 //get credentials for access to the CMS

 ICredentials credentials = CredentialCache.DefaultCredentials; //since the

token[1] says gets windows Credentials

 //read the document to get some details from it.

 XmlDocument doc = new XmlDocument();

 doc.LoadXml(fileContents);

 string id = doc.DocumentElement.GetAttribute(“id”);

 //if there is no ID we consider this to be a brand new document, or if there is

one if we consider this to be an existing document.

 Tritus.CMS.WebServices service = new
Tritus.CMS.WebServices();
 service.Url = webserviceURL;
 service.Credentials = credentials;
 int newId = 0;
 if(id ==String.Empty){
 //New document
 newId = service.ImportDocument(fileContents, fileName,

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 321

credentials);
 }
 else{
 //Existing document - attempt to invoke the Checkin
webservice.
 newId = service.CheckinDocument(id, fileContents,
fileName, credentials);
 }
 //Before returning, check with user whether to close
Document.
 if(success && invokeInternalClassDelegate != null &&
MessageBox.Show("Close Document?", "Tritus",
MessageBoxButtons.YesNo, MessageBoxIcon.Warning) ==
DialogResult.Yes){
 //The second parameter are for any other parameters for
DocumentClose.Please refer to DocumentClose documentation for all
possible parameters
 invokeInternalClassDelegate("DocumentClose", new
Hashtable()); //This will initiate the closing of the document.
 }
 else
 //Do nothing. The document will remain open in the UI.

 //As seen above, the upload() method can initiate closure
of a document as well through the above delegate call. This makes
it a little more flexible in terms of closing document for
 //various scenarios. In the above case, I close the
document only if user chooses Yes in the dialog.

 return success; //since there is no event following the
upload() in the MenuItem, the return value here does not hold any
relevance.
 }catch(Exception e)
 {
 //Good idea to log any specific errors.
 //Can be either thrown back to Quark XML Author or a
false return to signify failure
 return false;
 }
 }

Example 3: Upload a document fragment

In the previous examples, the upload was for a complete document. There are

multiple ways to upload/import partial fragments into a CMS by making use of the

Extensibility Interface. (A complete discussion of the Extensibility Interface can be

found in section 6.) For example, let’s say the user wants to make a List in the

document reusable by importing it into the CMS as a brand new fragment. Here is a

sample configuration that will do it:

<!-- Method definition (in the doc-config) file-->
<Method id="UploadAnyFragment" assembly="Tritus"
class="fullNamespaceOftheClass.Tritus" method="UploadFragment">
 <Argument type="XomCurrentNode"/>
 <Argument type="Tokens">
 <Token>enableLogging=true</Token>
 <Token>credentials=windows</Token>

<Token>webservice=http://soap.tritus.com/schemas/TritusWebService
s.wsdl</Token>
 </Argument>
 <Argument type="Delegates">
 <Delegate>ToggleEditableRegion</Delegate>
 </Argument>

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

322 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

</Method>

<!-- Method reference (in the xas file)-->
<ElementDef name="List" friendly="List" visible="false">
 <Section>
 <Sequence maxOccurs="unbounded">
 <SectionType name="ListItem"/>
 </Sequence>
 </Section>
 <Attributes>
 <AttributeType name="id"/>
 </Attributes>
 <ExtensibilityMethods>
 <!-- HERE IS THE ACTUAL REFERENCE-->
 <ExtensibilityMethod id="UploadAnyFragment" friendly="Reuse
Component"/>
 </ExtensibilityMethods>
</ElementDef>

There are two parts to any Extensibility Interface implementation—definition and

reference. The definition in this case is in the document configuration file. The

reference is in the Quark XML Author Structure (xas). The reference is allowing us to

access the UploadFragment from the UI through the Component->List Context

Menu. So if we want to make an existing list in a document a reusable component

in the CMS , we will right-click on the List (or any of its children), access the

Component->List menu and we should see the Reuse Component menu item.

Clicking that will invoke the UploadFragment()method. As shown in the definition,

it takes the XomCurrentNode, which in this case will be the List instance. The

ToggleEditableRegion delegate is passed in to mark the region non-editable

(indicated by color shading the background of the region) after the upload is

successful. This reference must be repeated for each element that can be marked as a

reusable fragment. For example, if tables in the document can be marked as

reusable, the reference would need to appear in the table element definition as well.

The upload method that would be used in conjunction with the example above is

shown below:

namespace fullNamespaceOftheClass
{
 public class Tritus
 {
 public void UploadFragment(XmlNode nodeToBeUploaded, string[]
tokens, Delegate[] delegates)
 {
 //Remember these are completely arbitrary and not
required.If there are no tokens in the config file, tokens will
be null.
 //read the tokens - Order of tokens are preserved.
 bool log = tokens[0].Split('=')[1]].Equals("true"); //to
turn logging on.
 string cred = tokens[1].Split('=')[1]]; //use windows
credentials
 string webserviceURL = tokens[2].Split('=')[1]]; //web
service URL.

 Invision.Xpress.ExtensibilityDelegates.ToggleEditableRegion
toggleEditableRegionDelegate = delegates[0] as
Invision.Xpress.ExtensibilityDelegates.ToggleEditableRegion;

 //get credentials for access to the CMS
 ICredentials credentials =
CredentialCache.DefaultCredentials; //since the token[1] says
gets windows Credentials

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 323

 Tritus.CMS.WebServices service = new
Tritus.CMS.WebServices();
 service.Url = webserviceURL;
 service.Credentials = credentials;
 bool success = false;
 int newId = 0;
 string id = nodeToBeUploaded.GetAttribute("id");
 if(id ==String.Empty){
 //New fragment
 newId = service.ImportFragment(fileContents,
credentials);
 }
 else{
 //Existing fragment - attempt to invoke the Checkin
webservice.
 newId = service.CheckinFragment(id, fileContents,
credentials);
 }
 //Make the uploaded node non-editable and also toggle the
region in the UI to make it read-only.
 if(newId > 0 && toggleEditableRegionDelegate != null)
 {
 XmlNode[] nodesToBeMadeReadonly = new XmlNode[1];
 nodesToBeMadeReadonly.Add(nodeToBeUploaded);
 //For all nodes append an inv:access=readonly attribute
to make sure the nodes cannot be modified.
 XmlAttribute accessAttr =
nodeToBeUploaded.OwnerDocument.CreateAttribute("inv", "access",
"urn:xpressauthor:xpressdocument");
 accessAttr.Value = "read-only";
 nodeToBeUploaded.Attributes.Prepend(accessAttr);
 //Assign the new id to the id attribute.
 nodeToBeUploaded.SetAttribute("id", newID);
 toggleEditableRegionDelegate(nodesToBeMadeReadonly,
true, true); //This will notify the UI to make the List and all
its region non-editable
 }
 }
}

Download and Content Reuse

Two types of operations for retrieving content from a CMS need to be considered:

opening an entire document and importing content fragments into an already open

document.

Open a CMS Document in Quark XML Author

Quark XML Author has built-in classes to open a document from a local or network

drive, or from a network WEBDAV folder. If the location is on a proprietary CMS,

there are two possible ways to support opening a file:

Leveraging an existing hook in the external CMS. For example, the •

Documentum CMS, through its Webtop interface, exposes a way to launch an

external editor to edit XML files. Quark XML Author can be configured as such

an external editor through the File types association in Windows Explorer.

From within Quark XML Author. •

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

324 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

The simplest way to do the latter would be to write an extensibility method to

download the entire document into a temp location on disk and launch Quark XML

Author to open the downloaded file. Here is a simple example that does just that:

<Method id="OpenFromTritus" assembly="Tritus"
class="fullNamespaceOftheClass.Tritus" method="OpenFromTritus">
 <Argument type="Tokens">
 <Token>credentials=TritusLogin.xml</Token>

<Token>webservice=http://soap.tritus.com/schemas/TritusWebService
s.wsdl</Token>
 <Token>openLocation=c:\Tritus\Export</Token>
 </Argument>
</Method>

This method definition invokes the OpenFromTritus method exposed in the class

shown below:

namespace fullNamespaceOftheClass
{
 public class Tritus
 {
 public void DocumentOpen(string[] tokens)
 {
 //read tokens
 string openLocation = tokens[3].Split('=')[1]];
 string webserviceURL = tokens[1].Split('=')[1]]; //WSDL
location
 //Connect to the Tritus web service
 Tritus.CMS.WebServices service = new
Tritus.CMS.WebServices();
 service.Url = webserviceURL;
 service.Credentials = credentials;

 //Launch some sort of File Explorer UI to get the file
path and download it. Remember this is just an example
 //and the implementation can differ. The ultimate
objective is to download the file to a local temp location and
have Quark XML Author launch
 //this temporary file.
 stream content = service.OpenFromRepository(ref
returnContentType, ref filename); //get the content type, and the
opened object's name
 if(content != null &&
returnContentType.IndexOf("text/xml") > -1) //Only interested in
XML content
 {
 //Save it to a local location with the returned
filename
 string tempFileName = openLocation +"\\" +
DateTime.Now.Ticks +"\\" + filename + ".xml";
 FileInfo tempF = new FileInfo(tempFileName);
 if (!tempF.Directory.Exists)
 tempF.Directory.Create();
 StreamWriter writer = new
StreamWriter(tempF.FullName, false, "UTF-8");

 System.IO.StreamReader sr = new
System.IO.StreamReader(content, Encoding.GetEncoding("UTF-8"));
//Assuming encoding as UTF-8
 string fileContents = sr.ReadToEnd();
 sr.Close();
 //If the file or part of it needs to be launched in

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 325

readonly mode, the nodes to be launched in read-only mode can be
assigned an Invision defined
 //attribute called inv:access like below.
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(fileContents);
 XmlAttribute accessAttr = doc.CreateAttribute("inv",
"access", "urn:xpressauthor:xpressdocument");
 accessAttr.Value = "read-only";
 doc.DocumentElement.Attributes.Prepend(accessAttr);
 writer.Write(doc.OuterXml);
 writer.Close();

 if(File.Exists(tempFileName)
 Process.Start(tempFileName); //This assumes that
the text/xml mimetype in the file type associations is mapped to
Quark XML Author.

 }
 }
 }
 }

Importing content into existing documents

External content can be imported into Quark XML Author by dragging and

dropping hyperlinks to the external content into the document. Content links can

be dropped in “Empty” locations in the document or onto a Reference element that

has previously been inserted.

“Empty” locations are nothing but an empty paragraph that Quark XML Author

uses to delineate separate content elements. These paragraphs are assigned the

“Empty” style and cannot hold any content. When the user drops a link onto an

Empty location, Quark XML Author inserts the dropped content and surrounds the

new element(s) with Empty paragraphs. The dropped content becomes a part of the

document and can be edited in-line without affecting the source. This content is

therefore a ‘copy’ and does not retain any relationship with the original content.

Reference elements can be defined so that content can be imported that is not

editable within Quark XML Author. A reference container is simply an XML

container element with an hfref attribute; the attribute points to the resource being

referenced. See section 14.7 for information on defining reference elements in the

Quark XML Author Structure.[1]

For either method of importing content, the ResolveReferences node in the

AppConfig file must be present and configured to accept data from the CMS. A

typical configuration from the AppConfig.xml looks like this:

<ResolveReferences>
 <Reference pattern="?objId=x-en-tritus:" assembly="Tritus"
class="IfullNamespaceOftheClass.Tritus">

<Token>webservice=http://soap.tritus.com/schemas/TritusWebService
s.wsdl</Token>
 <Token>credentials=TritusLogin.xml</Token>
 </Reference>
 <!-- This is the default fallback pattern (.*) that matches
every url. -->
 <Reference pattern=".*" assembly="SomeOtherDll"
class="SomeOtherNamespace.SomeOtherClass"/>
</ResolveReferences>

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

326 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

ResolveReferences can hold multiple Reference nodes, each of which can invoke a

different download() interface to get content from one or more content

management systems. The download() interface itself is explained in the next

section.

Table 17‑2 defines the attributes used for the Reference node.

Table 17‑2: Reference Attributes

[1] It is possible to import content in non-editable form without using reference

elements, but this requires additional external resources. For example, the

DocumentOpen event could be used to call an external DLL that scans the

document, searches for content that should not be edited, and marks it accordingly.

However, the content still “lives” within the document, whereas with a reference

element, the content “lives” in the CMS and is merely referenced by the document.

Attribute Required Definition

assembly yes Name of the assembly which

contains the download()

interface implementation.

class yes Name of the class which

contains the download()

interface implementation.

pattern yes The pattern attribute’s value

must be a regular expression

that contains a matching

pattern for the URI that refers

to the CMS. When an object is

dragged into Quark XML

Author, Quark XML Author

searches for a pattern that can

be matched against the URI for

the object being dragged into

it.

In the example above, if the

URL being processed contains

?objId=x-en-tritus: then the

IfullNamespaceOftheClass.Trit

us.download() method is

invoked. For all other URLs,

SomeOtherNamespace.SomeOt

herClass.download() is

invoked.

To allow all URIs to match a

single Reference node, the

wildcard character phrase (.*)

can be used as the value of the

pattern attribute.

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 327

Download Interface

The external DLL that calls the CMS must implement one of the following

interfaces:

Stream download(string uri, string[] tokens, out string returnContentType)

Stream download(string uri, string[] tokens, out string returnContentType, out

string alternateText)

Table 17‑3: Download Interface Parameters

The method must return a stream of the downloaded content.

Here is a very simple download() example:

namespace fullNamespaceOftheClass
{
 public class Tritus
 {

 public Stream download(string url, string[] tokens, out
string returnContentType)
 {
 //Using the first Reference node as an example..
 string webserviceURL = tokens[0].Split('=')[1]]; //WSDL
location
 string cred = tokens[1].Split('=')[1]]; //use windows
credentials
 //get credentials for access to the CMS
 ICredentials credentials =
CredentialCache.DefaultCredentials; //since the token[1] says
gets windows Credentials
 Tritus.CMS.WebServices service = new
Tritus.CMS.WebServices();

Parameter Definition

uri The actual URI used for the download.

tokens A string array of tokens used in the AppConfig

file (see the example in the previous section).

The token array may allow a zero-length string

array to be passed in the event that no tokens

are provided.

The current document’s filename is always

passed to the download method as a separate

token, so that if the ResolveReference node has

three tokens, the actual number of tokens

provided to the download method will be four.

returnContentType The content type of the downloaded stream

that the method is returning to Quark XML

Author.

alternateText An optional parameter which can be used

exclusively for image references; allows Quark

XML Author to assign and display an alternate

text value for the image.

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

328 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 service.Url = webserviceURL;
 service.Credentials = credentials;

 //The url that comes in is the actual URL being resolved
by Quark XML Author. Let’s say it’s of the following form:
 //http://hyperbole.hyperactive.net/Documents?objId=x-en-
tritus:TT0000000000509154:0000:2.
 //We want to pull the objId from the URL and use it in
the GetObject() web service call.
 string objId = "x-en-tritus:TT0000000000509154:0000:2";
 //Have some sort of UI to see if user wants it checked
out, referenced OR a copy. ALternately this information can come
directly from the URL itself.
 //For example, there can be 3 seperate URLS -
Edit(..?objId=x-en-tritus:TT0000000000509154:0000:2&type=edit). ,
Copy(..?objId=x-en-tritus:TT0000000000509154:0000:2&type=copy),
Reference(..?objId=x-en-
tritus:TT0000000000509154:0000:2&type=reference)
 bool checkout= false;
 bool readonly = true;
 stream content = service.GetObject(objId, checkout,
readonly, out contentType);
 returnContentType = contentType; //Before returning, make
sure the returnContent mimetype is set, for ex:- text/xml,
image/jpg etc.
 if(returnContentType == "text/xml" && readonly)
 {
 System.IO.StreamReader sr = new
System.IO.StreamReader(content, Encoding.UTF8); //Assuming
encoding as UTF-8
 string fileContents = sr.ReadToEnd();
 sr.Close();
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(fileContents);
 //if the url is dropped on reference links instead of
on "empty", there is no need to perform the next step of tagging
elements as read-only.
 //Any content within the reference is automatically
tagged as read-only within the Quark XML Author UI and stripped
off when the document is serialized
 //leaving behind a reference container.
 XmlAttribute accessAttr = doc.CreateAttribute("inv",
"access", "urn:xpressauthor:xpressdocument");
 accessAttr.Value = "read-only";
 doc.DocumentElement.Attributes.Prepend(accessAttr);
 //Assign this attribute to every node recursively.
 //The fragment should have some CMS attributes (at
the very least it should have the id which will help Quark XML
Author identify it as a CMS fragment and NOT a local fragment)
 writer.Write(doc.OuterXml);
 writer.Close();
 return new
MemoryStream(Encoding.UTF8.GetBytes(doc.DocumentElement.OuterXml)
);
 }
 else
 return content; //For all other content, return as is.
Quark XML Author has to support the incoming content type at the
current location.
 }

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 329

Example 1: Drag and Drop External Content

Consider a simple use case situation: an existing Quark XML Author document is

open and we want to drag an object from the Tritus CMS into the document. The

URL for the object has the following format:

http://hyperbole.hyperactive.net/Documents?objId=x-en-

tritus:TT0000000000509154:0000:2.

The URL being dropped is matched against all possible Reference patterns defined in

the AppConfig. The first matching Reference node is selected (in our example

above, the first Reference node) and its corresponding download() method is

invoked with the dropped URL and any other tokens specified in the Reference

node. The download needs to communicate with the CMS and get the requested

object. Once the object is downloaded, the contentType of the downloaded content

has to be assigned and the downloaded object has to be passed back to Quark XML

Author as a stream.

Once Quark XML Author receives the stream, depending on the returned content’s

contentType, it determines whether this is an XML fragment or image content. If

this is an XML fragment, Quark XML Author checks to see if that fragment is

insertable at the given location. If there are multiple contexts of insertion (for

example, if a table is dragged on an insertable, and there are two possible tables that

can be inserted—one as a child of the Section and the other as a child of the

Section’s parent, Chapter), the user is shown a context menu that allows the user to

choose the correct context of information. If the downloaded XML fragment cannot

be inserted at the dragged location or is not XML, an error dialog is shown to the

user and the fragment is discarded. Once the fragment is inserted and attached to

the document, any CMS attributes present in the fragment are preserved within the

document.

If Quark XML Author receives any other content (other than

contentType=text/xml), at least one of the insertable elements defined for the

location of the drop must support the same mimetype. For example, if the returning

stream’s content type is image/jpeg, there has to be at least one insertable at the

drop position that supports the image/jpeg format. See section 14.7.1.1 for more

information on mimetypes that can be associated with Element definitions.

Example 2: Using Paste to Insert External Content

A paste operation can be performed as well. The user can copy the actual URL of the

object onto the clipboard by some means (for example, browsing to the object in

Internet Explorer, right-clicking, and selecting Copy Shortcut) and right click on

the appropriate Empty location in a Quark XML Author document. If the

downloaded fragment is insertable at that position, the context menu will contain a

Paste element name menu item (where element name is the friendly name of the

object as defined in the Quark XML Author Structure) along with other insertables

for that location. If the downloaded fragment cannot be pasted into that location,

no Paste menu option appears. Alternately, the user may right-click on a Reference

element that matches the downloaded fragment type (not the Empty location) and

click Assign reference on the context menu. The Reference element’s href attribute

will be assigned the URL of the downloaded fragment.

INTEGRATION WITH CONTENT MANAGEMENT SYSTEMS

330 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

 This paste is an alternative implementation to the drag-drop scenario above but the

implementation is nearly the same. The only difference in case of Copy and Paste is

that once a valid URL is copied to the clipboard, the fragment is also downloaded

and copied to the clipboard along with the original URL, so the user can actually

click around the document to determine the right insertion spot in the document.

The fragment remains on the clipboard until another copy operation is performed.

Example 3: Opening a Document Referencing External Content

When Quark XML Author opens a document that references external content, it

recognizes any element that is a reference container from its definition in the Quark

XML Author Structure and uses the element’s href attribute to invoke the

appropriate download() method and display the content.

For example, suppose a document being opened has the following structure:

<Document>

 <Section>

 <Title> Section name </Title>

 <ComponentReference

href=”http://hyperbole.hyperactive.net/Documents?objId=x-en-

tritus:TT0000000000509154:0000:2.”>

 </Section>

</Document>

In this example, ComponenteReference is a reference element; its href attribute

points to an external object. Quark XML Author displays that content in-line. If the

object cannot be downloaded, the rest of the document continues to open and the

reference container is flagged with an error label in the Quark XML Author

document.

CONFIGURING SMART PASTE

QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN GUIDE |

Configuring Smart Paste

Smart Paste is a Quark XML Author feature that allows you to copy content from a

standard Word document and convert that content to structured XML to be pasted

into a Quark XML Author document. This chapter explains how to configure Smart

Paste.

Smart Paste Overview

Smart Paste is accomplished through the use of three stylesheets, an Extensibility

Interface (EI) method, and an EI call from a document event. Here is an overview of

what happens when an author uses smart paste:

In an external document, the author selects content and copies it to the 1.

clipboard. If the external document is Microsoft Word, then Word pastes

XHTML onto the clipboard.

The author switches to a Quark XML Author document. Quark XML Author is 2.

now involved in the process. The Activated event fires and calls the EI method

defined to handle Smart Paste.

The EI method determines that there is content on the clipboard that needs to 3.

be processed. It calls the external Smart Paste.

SP_Filter.xslt filters the XHTML content on the clipboard. This performs a level 4.

of normalization.

SP_Clipboard.xslt converts the XHTML content into intermediate format that 5.

conforms to the Smart Paste schema. See “The Intermediate Schema”. This

performs an additional level of normalization. The normalized content is ready

for configuration-specific processing.

A configuration-specific transform transforms the content into the XML 6.

structure that matches the target document schema. See “Configuration-specific

transforms”.

An additional configuration-specific transform can be used to further transform 7.

tabular content. See “Configuration-specific table transforms”.

When the user subsequently right-clicks in a document location, if the content on

the clipboard matches a legal document element as defined in the configuration,

the context menu will contain a Paste {element} entry corresponding to the copied

content.

CONFIGURING SMART PASTE

332 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Smart Paste Extensibility Method

SmartPaste.dll, which facilitates the Smart Paste feature, is a standard component of

Quark XML Author and is located in the Quark XML Author application folder. In

order to use Smart Paste, you must define an EI method in the DocConfig file. The

EI method will call the Start method in the

Invision.Xpress.Extensibile.SmartPaste class. Detailed information on configuring

EI methods can be found in section 6, but an example of the Method element and

its attributes is shown below:

<MethodInfo>
<Method id="SmartPaste" assembly="Quark.XA.SmartPaste"
class="Invision.Xpress.Extensible.SmartPaste" method="Start">
 <!-- Arguments are discussed below -->
 </Method>
</MethodInfo>

Of course, you may name the EI Method anything you wish; typically SmartPaste is

used as the Method’s id value for ease of reference.

The Start method requires one argument that contains three tokens. All three

tokens must be provided in name=value format, where name identifies the name of

the parameter being passed and value is the parameter value.

The first token identifies the location of the stylesheet that maps intermediate

content to the Quark XML Author Structure. It takes the following format:

ImportXslt=quark\Renditions\smart-paste.xsl

The left side of the name=value pair must be ImportXslt. The right side of the pair

is a path relative to the Quark XML Author application folder and must include the

full name of the stylesheet file.

The second token defines how images are to be handled if any are present in the

source content. Use Image=embed if the XAS specifies that images are embedded in

the document and Image=reference if the XAS defines images as referenced content.

The third token is the debug setting. For production systems, this will always be set

to Debug=false. If set to Debug=true, the system will display a window containing

four tabs, each of which contains the results of one stage of the transformation

process.

Configuration-specific transforms

A typical, fully-defined EI Method for Smart Paste is shown below:

<MethodInfo>
 <Method id="SmartPaste" assembly="Quark.XA.SmartPaste"
class="Invision.Xpress.Extensible.SmartPaste" method="Start">
 <Argument type="Tokens">
 <Token>ImportXslt=quark\Renditions\smart-paste.xsl</Token>
 <Token>Image=embed</Token>
 <Token>Debug=false</Token>
 </Argument>
 </Method>
</MethodInfo>
The following is an example of a DITA XML specific transform
call:
<!-- this snippet is found in doc config: DITA/sme-config.xml -
->
<ExtensibilityInterface>

CONFIGURING SMART PASTE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 333

 <MethodInfo>
 <Method id="SmartPaste" assembly="Quark.XA.SmartPaste"
class="Invision.Xpress.Extensible.SmartPaste" method="Start">
 <Argument type="Tokens">
 <Token>ImportXslt=DITA/xml_smartPaste_dita.xsl</Token>
 ...
 ...
 </Argument>
 </Method>

Configuration-specific table transforms

An additional configuration-specific transform can be used to transform tabular

content.

The following is an example of a DITA XML specific table transform call:

<!-- this optional snippet would be found in doc config:
DITA/sme-config.xml -->
<ExtensibilityInterface>
 <MethodInfo>
 <Method id="SmartPaste" assembly="Quark.XA.SmartPaste"
class="Invision.Xpress.Extensible.SmartPaste" method="Start">
 <Argument type="Tokens">
 ...
 <Token>CustomTableXslt=[PATH]/[FILENAME].xsl</Token>
 ...
 </Argument>
 </Method>

Enabling Smart Paste

As with any EI method, you must also define some means to call it. The Smart Paste

method is called by Quark XML Author’s Activated event, which is fired whenever

a Quark XML Author document receives focus. The Smart Paste method must be

defined in the DocConfig file, similar to the EI method. Add the following element

to the ExtensibilityInterface node of the DocConfig file:

<Activated>
 <ExtensibilityMethod id="SmartPaste"/>
</Activated>

The value of the id attribute must equal the value of the id value for the Smart Paste

method.

The Intermediate Schema

The intermediate table schema for 4.0 is XHTML. When table content is pasted

from Word, the format is XHTML and does not have to be converted.

Earlier versions of Quark XML Author used CALS as the intermediate schema which

required the table content from Word to have to be converted from XHTML to

CALS.

Smart Paste uses three stylesheets. Two standard stylesheets ship with Quark XML

Author and are typically not modified[1]. These stylesheets are SP_Clipboard.xslt

and SP_Filter.xslt, and are located in the Quark XML Author application folder.

These files perform the first stages of the transformation process. The result is an

XML document that conforms to the Smart Paste schema. It consists of an Import

CONFIGURING SMART PASTE

334 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

element that contains the copied content elements. An overview of the schema is

provided here.

Import can contain one or more of any of the following elements: Heading, Para,

ListItem, Table, and Image.

The third stylesheet is configuration-specific and resides in the application \

configuration folder. For example, {application folder}

\DITA\xml_smartPaste_dita.xsl.

[1] Although these stylesheets are typically not modified, they can be changed to

support other types of source documents such as HTML, Microsoft Excel, or even

other types of XML Author documents.

TextType Elements

The first three elements (Heading, Para, and ListItem) are all TextType elements and,

as such, have the same substructure (described in section 18.4.1.1, “TextType

Structure”).

Table 18‑1: TextType Elements

TextType Structure

TextType elements comprise either text or a Hyperlink child element.

Text can be mixed with any combination of Bold, Italic, and Underline elements.

Superscript and Subscript are also available, but may not contain any further

markup.

Hyperlink contains text that also may be mixed with the markup elements listed

above. It also has the attribute xlink:href, which contains the URL to which the

hyperlink points.

Element Definition

Heading Heading elements are created from any Word

paragraph that has a style of Heading #, where

is any number (Heading 1, Heading 2, etc.)

Heading has no special attributes.

ListItem ListItem elements are created from any Word

paragraph that is a list style (bullets or

numbered). The style attribute specifies whether

the list item type is bullet (style=”ul”) or

numbered (style=”ol”). For example:

<ListItem style=”ul”>List item text</ListItem>

Note that ListItem elements are not wrapped in

any sort of parent List element; this must be

accomplished in the final transform stylesheet.

Para Any text paragraph in the source content that

does not meet the criteria for a Heading or a

ListItem element is transformed into a Para

element. Para has no special attributes.

CONFIGURING SMART PASTE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 335

Table

Smart Paste may only configured for one table definition per configuration. The

final table definition is determined by the final transformation of the intermediate

table format (illustrated below) into the desired format (CALS, HTML, etc.).

The output from sp_clipboard.xslt converts the filtered Word XHTML into a table

with an HTML-like structure. This is an example of a 2x2 Word table after

transformation:

<Import xmlns:v="urn:schemas-microsoft-com:vml"
xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:w="urn:schemas-microsoft-com:office:word"
xmlns:sp="http://www.w3.org/TR/REC-html40"
xmlns:spext="urn:xpressauthor:smartpaste:extensions"
xmlns:inlinext="urn:convert"
xmlns:xlink=http://www.w3.org/1999/xlink
xmlns:xt="urn:xpressauthor:trackchanges>
 <Table>
 <tbody>
 <tr>
 <td tempid="EDDDBA" colspan="" rowspan=""
tableRowColumnSize="239.4pt" tableBorderBottomStyle=""
tableBorderTopStyle="" tableBorderRightStyle=""
tableBorderLeftStyle="">
 <Para>Table cell one</Para>
 </td>
 <td tempid="EBDDBA" colspan="" rowspan=""
tableRowColumnSize="239.4pt" tableBorderBottomStyle=""
tableBorderTopStyle="" tableBorderRightStyle=""
tableBorderLeftStyle="">
 <Para>Table cell two</Para>
 </td>
 </tr>
 <tr>
 <td tempid="EDBDBA" colspan="" rowspan=""
tableRowColumnSize="239.4pt" tableBorderBottomStyle=""
tableBorderTopStyle="" tableBorderRightStyle=""
tableBorderLeftStyle="">
 <Para>Table cell three</Para>
 </td>
 <td tempid="EBBDBA" colspan="" rowspan=""
tableRowColumnSize="239.4pt" tableBorderBottomStyle="single"
tableBorderTopStyle="" tableBorderRightStyle="single"
tableBorderLeftStyle="
 none">
 <Para>Table cell four</Para>
 </td>
 </tr>
 </tbody>
 </Table>
</Import>

Image

The attributes and content of the Image element depend on the value of the Image

token in the EI Method.If the token content is Image=reference, then the Image

element is empty and the href attribute specifies the location of the referenced

image.If the token content is Image=embed, then the Image element contains the

Base 64 encoding for the image content and the href attribute is not used.

Table 18‑2: Image Attributes

http://www.w3.org/1999/xlink

CONFIGURING SMART PASTE

336 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Final Transformation Stylesheet

The final transformation stage is performed by the stylesheet identified in the first

Token described above. Although this stylesheet can have any file name, we will

refer to it here as the “Smart Paste stylesheet”.

The Smart Paste stylesheet maps the intermediate document to the Quark XML

Author Structure so that the content can be pasted into the Quark XML Author

document.

Multipart Wrapper

If the user selects more than one paragraph[1] in the source document, the XML

that is added to the clipboard must be contained in a Multipart wrapper element.

Consider the very simple example of an Import document with two sibling

paragraphs, as shown below:

<Import>
 <Para>Test1</Para>
 <Para>Test2</Para>
</Import>

These sibling elements must be placed within the Multipart wrapper. In the example

below, the Para element from the intermediate stylesheet has been mapped to the

<p> element:

<Multipart>
 <p>Test1</p>
 <p>Test2</p>
</Multipart>

The Smart Paste stylesheet must implement logic to determine whether or not the

Multipart wrapper is necessary. The XSLT template below returns a value of true or

false to specify whether or not the Multipart wrapper should be used. The template

checks the intermediate XML content to see if the selection includes multiple

sibling elements, including Heading and child elements:

<!--

Attribute Required Definition

href no Value is the URL of a

referenced image. If the file no

longer exists at its original

location when the copy

operation is performed, the

value will be a temporary

location.

filename yes Value is the file name of the

image.

coordinates yes Value is four comma-separated

integers specifying, in this

order: X position, Y position,

width, and height of the

image.

CONFIGURING SMART PASTE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 337

 ** Import Template ++ Decide whether to use the Multipart
parent container

*********-->
<xsl:template name="IsMultipart">
 <xsl:choose>
 <xsl:when test="count(//Heading) > 1">
 <xsl:value-of select="true()"/>
 </xsl:when>
 <xsl:when test="count(//Heading) = 1 and
count(/Import/*[position() = 1 and local-name() != 'Heading']) >
0">
 <xsl:value-of select="true()"/>
 </xsl:when>
 <xsl:when test="count(//Heading) = 0 and count(//para) > 1">
 <xsl:value-of select="true()"/>
 </xsl:when>
 <xsl:when test="count(//Heading) = 0 and count(//para |
//InvisionTable) > 1">
 <xsl:value-of select="true()"/>
 </xsl:when>
 <xsl:when test="count(//Heading) = 0 and count(//para) = 1
and count(//Import/*[position() = 1 and local-name() != 'para'])
> 0">
 <xsl:value-of select="true()"/>
 </xsl:when>
 <xsl:when test="count(//Heading) = 0 and count(//para) = 1
and count(//Import/*[position() = 1 and local-name() = 'para']) =
1 and count(//Import/*[local-name() != 'para' and local-name() !=
'listitem']) > 0">
 <xsl:value-of select="true()"/>
 </xsl:when>
 <xsl:when test="count(//Heading) = 0 and count(//para) = 0
and count(/Import/*) > 1 and count(/Import/*[local-name() !=
'listitem']) = 0">
 <xsl:value-of select="false()"/>
 </xsl:when>
 <xsl:when test="count(//Heading) = 0 and count(//para) = 0
and count(/Import/*) > 1">
 <xsl:value-of select="true()"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="false()"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

The rest of the stylesheet must be defined to map the intermediate elements, as

described previously, to the appropriate elements in the Quark XML Author

Structure.

[1] In this context, “paragraph” refers to any object in the Word document:

paragraphs, tables, images, etc., and any combination of these.

Example: Intermediate Heading > Quark XML Author Section

In the following template, the stylesheet transforms any Heading element it finds

into a Section element. It examines the Heading’s subsequent sibling elements and

CONFIGURING SMART PASTE

338 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

places them within the section element until it finds another Heading element or

reaches the end of the document.

<xsl:template match="Heading">
 <xsl:element name="section">
 <xsl:if test="(count(.//*) > 0) or (string-length(text()) >
0)">
 <title>
 <xsl:apply-templates select="text() | Bold | Italic |
Underline | Superscript | Subscript | Hyperlink"/>
 </title>
 </xsl:if>
 <xsl:variable name="thisPos" select="count(preceding-
sibling::*) + 1"/>
 <xsl:variable name="lastPos">
 <xsl:choose>
 <xsl:when test="not(following-sibling::Heading)">
 <xsl:value-of select="count(//Import/*)+1"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:for-each select="following-sibling::Heading[1]">
 <xsl:value-of select="count(preceding-sibling::*) +
1"/>
 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:for-each select="//Import/*">
 <xsl:if test="position() > $thisPos and position() <
$lastPos">
 <xsl:choose>
 <xsl:when test="local-name() = 'listitem' and
count(preceding-sibling::*[position() = 1][local-name() =
'para']) = 1"/>
 <xsl:when test="local-name() = 'listitem' and
count(preceding-sibling::*[position() = 1][local-name() =
'listitem']) = 0">
 <xsl:apply-templates select="."/>
 </xsl:when>
 <xsl:when test="local-name() = 'listitem' and
count(preceding-sibling::*[position() = 1][local-name() =
'listitem']) > 0"/>
 <xsl:otherwise>
 <xsl:apply-templates select="."/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:if>
 </xsl:for-each>
 </xsl:element>
</xsl:template>

Example: Handling List Items

The following template contains logic to handle list item elements.

<xsl:template match="listitem">
 <xsl:choose>
 <xsl:when test="count(preceding-
sibling::*[position()=1][contains(',listitem,', local-name())]) =
0">
 <itemizedlist>
 <xsl:copy>
 <xsl:apply-templates/>
 </xsl:copy>
 <xsl:apply-templates select="following-
sibling::*[position() = 1][local-name() = 'listitem']"/>

CONFIGURING SMART PASTE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 339

 </itemizedlist>
 </xsl:when>
 <xsl:when test="count(following-
sibling::*[position()=1][local-name() = 'listitem']) > 0">
 <xsl:copy>
 <xsl:apply-templates/>
 </xsl:copy>
 <xsl:apply-templates select="following-
sibling::*[position() = 1][local-name() = 'listitem']"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:copy>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

Example: Handling Table Rows

The following template validates that a row should only be transformed if it

contains table data (i.e. cell).

<xsl:template match="tr">
 <xsl:if test="descendant::td">
 <row>
 <xsl:apply-templates select="@*[name()!='xmlns']"/>
 <xsl:apply-templates select="td"/>
 </row>
 </xsl:if>
</xsl:template>

CONFIGURING METAFORMSBRIDGE

340 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Configuring MetaFormsBridge

In some instances, a Windows form is a better user interface for adding and editing

XML data than the Word canvas. Metadata forms, called MetaForms, can be created

using the MetaForms Designer tool. For more information about creating

MetaForms, see the MetaForms Designer User Guide. This section explains how to

create the Extensibility Interface method that calls a MetaForm.

Quark XML Author provides an external class assembly, MetaFormsBridge, which

can be called to link a visual form with a Quark XML Author document for

inputting non-narrative XML data. The class information is listed below:

Full class name: Invision.MetaForms.MetaFormsLaunch

Assembly: MetaFormsBridge

Method: XpressRun

Like all external methods, XpressRun is called via an Extensibility Interface(EI)

method in the document configuration file. Because XpressRun would only be used

in conjunction with a Quark XML Author document, its EI method would only

exist in a DocConfig file, and not in the AppConfig file. In the example below, a

method named DocumentAttributes calls XpressRun:

<Method id="DocumentAttributes" assembly="MetaFormsBridge"
class="Invision.MetaForms.MetaFormsLaunch" method="XpressRun">
 <!-- Method info -->
</Method>

For more information about building EI methods, see Section 6.

XpressRun Method

XpressRun returns a Boolean value. As with all EI methods, a return value of false

halts processing of any further EI methods that may be associated with the

command that called XpressRun. There are six signatures, shown below:

public bool XpressRun(string accessMode, XmlNode[] sourceNodes,
string[] tokens, Delegate[] delegates)
public bool XpressRun(string accessMode, XmlNode[] sourceNodes,
string[] tokens)

public bool XpressRun(string accessMode, XmlNode sourceNode,
string[] tokens)
public bool XpressRun(string accessMode, XmlNode sourceNode,
string[] tokens, Delegate[] delegates)

public bool XpressRun(XmlNode sourceNode, string[] tokens)
public bool XpressRun(XmlNode sourceNode, string[] tokens,
Delegate[] delegates)

CONFIGURING METAFORMSBRIDGE

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 341

The parameters that XpressRun may accept are explained below.

Table 19‑1: XpressRun Parameters

XpressRun Tokens

The following tokens may be supplied via the Tokens parameter:

Table 19‑2: XpressRun Tokens

Parameter Definition

accessMode Passes the access mode of the document. If the

document’s accessMode is set to Review, the

document is set to read only. The MetaForm can

still be displayed and viewed, but any changes

made while the form is open will not propagate

back to the document when the form is closed.

Delegate(s) Provides a delegate or list of delegates that will

be supplied to XpressRun. If

Invision.Xpress.ExtensibilityDelegates.UpdateAt

tributes is one of the delegates supplied, then it

is executed on completion of form

modifications. For information on Quark XML

Author delegates, see Section 6.4.

sourceNode(s) Provides the node or an array of nodes to be

processed.

tokens Specifies an array of values that can be passed to

XpressRun to define where the MetaForm files

are located, among other things. Tokens are

explained in detail in the XpressRun Tokens

section, below.

Parameter Definition

Config=path Replace path with the path to the MetaForms

configuration file. This is the main file defining

the form. The path is relative to the Quark XML

Author application folder.

Rules=path Replace path with the path to the rules file for

the MetaForm. The path is relative to the Quark

XML Author application folder.

Validate=true/false If set to true, directs Quark XML Author to run

a validation script if one is specified in the

configuration file. Defaults to false.

ValidateMessage=message Replace message with the text of the message to

show on a validation error.

xmlns=namespace Replace namespace with the namespace for the

MetaForm.

XPath=path Replace path with XPath into the source node

CONFIGURING METAFORMSBRIDGE

342 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

MetaForms Files

The files that define a MetaForm can be placed in any location, but Quark

recommends placing them in a subfolder of the folder containing the configuration

files for the document class. For example, given a configuration for a document

class called Book, the configuration files for Book might be located in:

C:\Program Files\Quark\XML Author\Book

The MetaForm files should be placed in a subdirectory of Book. Again, the name of

the folder can be anything, but Quark recommends naming the folder MetaForms:

C:\Program Files\Quark\XML Author\Book\MetaForms

Example

The example below illustrates one possible use of MetaFormsBridge. In this

example, the method is used to call a document attributes form.

<Method id="DocumentAttributes" assembly="MetaFormsBridge"
class="Invision.MetaForms.MetaFormsLaunch" method="XpressRun">
 <Argument type="AccessMode"/>
 <Argument type="XomRoot"/>
 <Argument type="Tokens">
 <Token>Config=Book\Metaforms\DocumentAttributes.xml</Token>
 <Token>XPath=./DocumentMetadata</Token>
 </Argument>
 <Argument type="Delegates">
 <Delegate>UpdateAttributes</Delegate>
 </Argument>
</Method>

This example implements the fourth XpressRun interface shown above, and

reproduced here:

public bool XpressRun(string accessMode, XmlNode sourceNode, string[] tokens,

Delegate[] delegates)

When the EI method is invoked, it passes the document access mode and the entire

document structure to XpressRun (XomRoot—see section 6.3.1 for general

information on XOM and Section 6.3 for the XomRoot enumerated value) to

XpressRun. The tokens point to the MetaForm’s configuration file and the XPath

location of the source node to begin processing in the document. The configuration

file is located in the Metaforms subdirectory of the document configuration file’s

location, and is called DocumentAttributes.xml. The XPath points to the

DocumentMetadata node.

Finally, the UpdateAttributes delegate is supplied. When the user finishes making

changes to the form, UpdateAttributes is triggered.

Parameter Definition

to use as the start node for processing.

IMPLEMENTING CROSS REFERENCES

QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN GUIDE |

Implementing Cross References

A cross reference is a navigable link within a document either to another location in

the document or to an external document (another Quark XML Author document,

a URL, or another type of document) stored in a content management system or

other file storage system.

Implementing cross-references requires configuration in the AppConfig, DocConfig,

Cross Reference EI Config and Schema.

AppConfig

A <Reference> node is necessary to resolve the cross reference link. See Section 7.1

for details on the <Reference> node. Implementing a cross reference in a DITA

environment can use the dita-cms assembly shown in the example below.

<ResolveReferences>
 <Reference pattern=".*" assembly="dita-cms"
class="Invision.Xpress.CMS.DitaCMS">
 <Token>errorLogging=true</Token>
 <!-- The following specifies tooltip format:
{0}=filename and {1}=title -->
 <Token>alternateTextFormat={1} - {0}</Token>
 </Reference>
</ResolveReferences>

DocConfig

There are two components to configure in the DocConfig file: an EI Method and the

ComponentCopy node.

EI Method

Create an Extensibility Method that points to the assembly, class, and method that

returns the cross reference string information. Implementing a cross reference in a

DITA environment can use the dita-cms assembly shown in the example below.

<Method id="GetComponentId" assembly="DITA-cms"
class="Invision.Xpress.CMS.DitaCMS" method="GetComponentId">
 <Argument type="Filename"/>
 <Argument type="XomCurrentNode"/>
</Method>

ComponentCopy Node

Implement the <ComponentCopy> node (Section 9.5) with the getReferenceId

attribute. The value of this attribute is the value of the id attribute of the

IMPLEMENTING CROSS REFERENCES

344 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Extensibility Interface <Method> defined above. If transform attribute is present in

ComponentCopy node, then the cascading stylesheets within the ComponentCopy

node will not be honored.<ComponentCopy getReferenceId=”GetComponentId”>

<Stylesheet xslt="..\CopyTransform.xslt" />
<Stylesheet xslt="..\CopyTransform1.xslt" />
</ComponentCopy>

ElementDef

You must specifically designate each element that you want to be able to target as a

cross reference by assigning a value to the referenceAttribute attribute. See “Table

14‑1” for information on referenceAttribute.

Only elements that have been assigned a referenceAttribute value will be available

for cross referencing. For example, if your schema has a section element that may

contain paragraph elements, and you define a referenceAttribute value to the

section element definition but not the paragraphs, only the section will be available

as a cross reference target, and not the paragraphs within it.

An example is provided below.

<ElementDef name="subuli2" xmlname="li" friendly="Sub-Sub List
Item" style="List Bullet 3" referenceAttribute="conref">
 <Section>
 <Para defaultHyperlink="xrefemph@format='html'">
 <Emphasis>
 <!-- Omitted for clarity -->
 </Emphasis>
 </Para>
 <Choice minOccurs="0" maxOccurs="unbounded">
 <SectionType name="lp"/>
 <ReferenceType name="image"/>
 <SectionType name="childTextNode"/>
 </Choice>
 </Section>
 <Attributes>
 <!-- Omitted for clarity -->
 </Attributes>
</ElementDef>

EmphasisDef

Cross references in Quark XML Author are represented to the user using a

specialized emphasis definition. See Section 13.1.1 for information on building the

specialized emphasis. Note that the <Custom> link type must be specified, and its

assembly and class attributes must point to the external application that will handle

the link behavior. In a DITA environment, the Invision.Xpress.CustomLink.DITA

assembly shown in the example below can be used.

 The external application must implement the ICustomLink

interface. Details of this interface are beyond the scope of this document; if you

IMPLEMENTING CROSS REFERENCES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 345

need to implement a custom external application, please contact Quark for

technical support.

<EmphasisDef name="xref" friendly="Cross Reference"
xmlname="xref" excludeFromEmphasisCombo="true">
 <Specialized>
 <Link>
 <Multiple>
 <Custom substyle="dita"
assembly="Quark.XA.EI.ReferenceResolver"
class="XA.EI.ReferenceResolver.FileBasedReferenceResolver"/>
 <External substyle="html"/>
 </Multiple>
 </Link>
 </Specialized>
 <Style/>
 <SubStyles key="format">
 <SubStyle value="dita" friendly="Cross-Reference">
 <Style foreColor="Blue" underline="true"/>
 </SubStyle>
 <SubStyle value="html" friendly="Hyperlink">
 <Style foreColor="Blue" underline="true"/>
 </SubStyle>
 </SubStyles>
 <Attributes>
 <AttributeType name="href"/>
 <AttributeType name="format"/>
 </Attributes>
 <ExtensibilityMethods>
 <ExtensibilityMethod id="EditCrossReference" friendly=" -
Edit" showInContextMenu="true" enableXPath="self::*[local-
name()='xref' and @referencetype='Text' and
@*[local-name()='read-only']]"/>
 <ExtensibilityMethod id="UpdateReferences" friendly=" -
Update" showInContextMenu="true" enableXPath="self::*[local-
name()='xref' and @synctargettext='true']"/><ExtensibilityMethod
id="MakeCrossReferenceReadOnly" friendly=" - Mark Read-Only"
showInContextMenu="true" enableXPath="self::*[local-name()='xref'
and @synctargettext='false' and not(@*[local-name()='read-
only'])]"/>
 </ExtensibilityMethods>
 <Emphasis/>
 </EmphasisDef>

Configuring the Cross-reference dialog

Cross-references is a highly configurable feature. The potential cross reference target

can be configured in Quark.XA.EI.CrossReferences.dll.config. Items in the new

non-modal cross-reference dialog drop-down lists can be customized. The length of

the cross-references listed in the dialog can be also be defined. Authoring is now

possible while the dialog is open.

Configuring dialog listings based on target element names (XMLNames)
or XPath.

References can be configured in the Cross-reference EI configuration to get desired

reference types listed in the cross-reference dialog.

Table 20‑1: Configuration attribute values

IMPLEMENTING CROSS REFERENCES

346 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Examples

Listing all list items that do not have child elements as placeholders:

Specific xpaths can be mentioned for these cases as follows:

<ReferenceType Name =”Configured Numbered List” TargetElements= “”

xpath=”/descendant::*[local-name()=’oli’ and not(descendant::*[local-

name()=’placeholder’])]” AllowedProperties=”Paragraph number,Page number”/>

Note:

In Case both XPath and targetElements are present, the precedence of XPath 1.

will be higher and the list will be populated on the basis of the XPath.

Rules defined in the No Configuration case section will be equally applicable to 2.

the configured reference types.

Configuring dialog listing based on the name of target elements (XML Names)

Or XPath.

In the Cross-reference EI config file (Quark.XA.EI.CrossReferences.dll.config), the

References configuration can be built to get the desired types of references listed in

the dialog. The tag ReferenceType is used to configure the desired reference types.

<ReferenceSection>
 <References>
 <ReferenceType Name ="Configured Numbered List"

Parameter Definition

Name Attribute Values will be used as names for

grouping elements under their value. For

example “Configured Numbered List” will be

shown in the Reference Type combo box.

TargetElements XML names of Elements defined in the XAS

that need to be listed as reference types are to

be added as comma separated values.

xpath For advanced users, the XPath can be

configured to list elements with certain

properties.

AllowedProperties This attribute contains values that are a part of

the Insert Reference To field. The following

properties are available in the drop-down list:

Paragraph number •

Page number •

Text •

From these, Text is mandatory and will be part

of the selection irrespective of the configuration

definition.

IMPLEMENTING CROSS REFERENCES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 347

TargetElements= "oli, oli2, oli3, oli-feature" xpath=""
AllowedProperties="Paragraph number, Page number,"/>
 </References>
</ReferenceSection>

Or

<ReferenceSection>
 <References>
 <ReferenceType Name ="Configured Numbered List"
TargetElements= "" xpath="="/descendant::*[local-name()='oli' and
not(descendant::*[local-name()='placeholder'])]" "
AllowedProperties="Paragraph number, Page number,"/>
 </References>
</ReferenceSection>

If no configuration is provided, all elements present in the XML Author document

with the following properties will get listed, grouped by their friendly Element

Definition names as specified in the XAS:

referenceAttribute defined with the value conref in element def. 1.

ID or the UniqueIdentifier attribute is configured for the element in 2.

elementDef.

The element should be configured as visible(which is default property of 3.

elementdef).

 Insert Reference To will contain properties such as paragraph number, Page

Number and Text by default in the No configuration mode.

Table 20‑2: Configuring MaxLengthOfTextExtractedFromReference
and HrefAttributeOfCrossReferenceNodeName

Parameter Definition

MaxLengthOfTextExtractedFromReference This Attribute value signifies the maximum

length of a string in Text reference property as

shown in a caption text box or a list box. The

value is the maximum number of characters

allowed.

HrefAttributeOfCrossReferenceNodeName: This is a required attribute value to enable the

cross-references functionality. Its value contains

the name of the href attribute name of the xref

element as used in the environment under

consideration. For example, BUSDOCS uses

xlink:href.

EXTENSIBILITY INTERFACE USE CASE STUDY

348 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Extensibility Interface Use Case
Study

Inserting Elements Through EI in Quark XML Author

New elements can be inserted in Quark XML Author in the following ways:

Right-click on an insertion point (Empty Style) and select an item from context 1.

menu.

Select an item from the Styles drop-down list when the selection is at an 2.

insertion point (Empty Style).

Select a special menu item under the Insert menu or a button on the toolbar. 3.

Insert Table is one example.

Split the current element (if configured in the schema) into two elements via 4.

the Enter key. Another variation of this is to type in the empty below an

element which supports splits and Quark XML Author will automatically insert

the configured Element and paste the text into the newly added element.

The behavior for each of these operations is exactly the same. When a user chooses

a particular element to insert through any of the above means, Quark XML Author

looks up the XAS for the definition and builds an XML fragment to be attached to

the XOM. In addition, the UI is updated to display this new element if it is defined

as visible in the schema. Also any required descendants and attributes are also

picked up from the schema and inserted. If the XAS specifies default values to

certain elements and attributes, Quark XML Author incorporates them into the

fragment that it builds.

Another way of adding new content into Quark XML Author is to paste a valid

fragment at a valid insertable position. This option is available when (this is one

way, there are other ways) a user performs a Component->Copy operation and

copies an XML fragment to the clipboard. The paste operation is slightly different

from an insert because the paste does not build the fragment from the schema; it

already has the fragment, Quark XML Author validates the fragment against its

definition specified in the XAS at the current insertable location and only inserts

the fragment if it is valid and insertable at the current spot.

This case study discusses an alternate mechanism of inserting new content into an

existing document. In the first three scenarios above, Quark XML Author will

support addition of new content externally by exposing an Insert hook. This “hook”

can be created by adding the externalMethodId attribute to an insertable

EXTENSIBILITY INTERFACE USE CASE STUDY

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 349

ElementDef. The fourth scenario, splitting an element, will work just as before—

even if there is an externalMethodId specified in the ElementDef of the element

being split, the split will ignore the externalMethodId property and insert a

fragment from the schema. The insertable requirement means that if an external

ElementDef ends up being a required child of another ElementDef, that ElementDef

will also have to be defined as external. Quark XML Author will throw an exception

if the above condition is not met. This ensures that only insertable elements can

have externalMethodId attributes on them. If a potential insertable element

contains externalMethodIds in its descendants, the top most externalMethodId is

the only one invoked. Thus, this ‘hook” allows Quark XML Author to essentially

perform a paste operation as explained above with an insert operation.

Example 1

Here is a simple ElementDef for an Image element as defined in the XAS defined for

DITA:

<ElementDef name="image" friendly="Image" visible="false"
style="Heading 8" externalMethodId="getImage">
 <Reference altAttribute="alt">
 <Media xmlname="image" friendly="Image" required="true">
 <Mimetypes>
 <Mimetype type="image/bmp"/>
 <Mimetype type="image/gif"/>
 <Mimetype type="image/jpeg"/>
 <Mimetype type="image/jpg"/>
 <Mimetype type="image/png"/>
 <Mimetype type="image/tif"/>
 <Mimetype type="image/tiff"/>
 </Mimetypes>
 </Media>
 </Reference>
 <Attributes>
 <AttributeType name="href"/>
 <AttributeType name="keyref"/>
 <AttributeType name="alt"/>
 <AttributeType name="longdescref"/>
 <AttributeType name="height"/>
 <AttributeType name="width"/>
 <AttributeType name="align"/>
 <AttributeType name="placement"/>
 &univ-atts;
 <AttributeType name="class"/>
 <AttributeType name="outputclass"/>
 </Attributes>
</ElementDef>

As shown above, the image definition specifies an additional attribute called

externalMethodId. This property holds the value of an EI method which will be

invoked when an image element is inserted. Specifying an externalMethodId on an

ElementDef implies that that element will always be inserted by this

externalMethodId. The only exception as noted above is when the element is

created by the “split” operation. The externalMethodId has the responsibility to

return an XmlNode which will match the structure specified in the schema for the

element being inserted.

Since externalMethodId property can only be applied to insertable elements, this

means that any ElementDef which references this (external) ElementDef as a

required child will also have to be external.

EXTENSIBILITY INTERFACE USE CASE STUDY

350 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

For example,

<ElementDef name="imagemap" friendly="Image Map" visible="true"
style="Tag 2" externalMethodId="getImageMap">
 <Section>
 <Sequence minOccurs=”1” maxOccurs=”1”>
 <SectionType name="image"/>
 </Sequence>
 <Sequence maxOccurs="unbounded">
 <SectionType name="area"/>
 </Sequence>
 </Section>
 <Attributes>
 ...
 </Attributes>
 </ElementDef>

In the above definition, the imagemap element has two required child elements

(specified by the minOccurs=”1” value): image and area. According to the restriction

above, the imagemap element will also have to be external since it is a referencing

image which is a required child and is defined to be external as above. If the image

were optional, then imagemap would not need to be external. If this restriction is

not enforced in the schema, Quark XML Author will throw an exception when a

document referencing this schema is first opened.

The External Method definition is like any other EI definition. Here is a sample

element definition:

<ElementDef name=”imagemap” friendly=”Image Map” visible=”true” style=”Tag 2”

externalMethodId=”getImageMap >

…”</ElementDef>

The externalMethodId references this EI method:

<Method id=” getImageMap “ assembly=” InsertEI”

class=”Invision.Xpress.Extensible.InsertElementManager”

method=”GetImageMap”/>

The GetImageMap() EI (and all other EIs specified in the externalMethodId

attribute) must return an XmlElement. Here is what the GetImageMap() method for

DITA image element would look like:

public XmlElement GetImageMap()
{
 string xml = "<imagemap><image href=\"C:\\..\\My
Pictures\\4.bmp\" height=\"358\" width=\"286\"/> " +
 "<area> " +
 "<shape>Shape</shape>" +
 "<coords >Coordinates</coords>" +
 "<xref >Cross-reference</xref>" +
 "</area>" +
 "</imagemap>";
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(xml);
 return doc.DocumentElement;
}

The method simply returns a valid imagemap XmlElement. The method above does

not use any arguments but it can also use any predefined arguments that Quark

XML Author exposes. Here is another example:

<Method id=" getImageMap " assembly=" InsertEI"
class="Invision.Xpress.Extensible.InsertElementManager"

EXTENSIBILITY INTERFACE USE CASE STUDY

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 351

method="GetImageMap">
 <Argument type="Filename"/>
 <Argument type="Tag"/>
</Method>

Here is how the method looks now:

public XmlElement GetImageMap(string filename, string
insertableCaption)
{
 string file = filename; //name of the file that is currently
open
 string insertCaption insertableCaption; //Caption that’s shown
to user in the insertables context menu.
 string xml = "<imagemap><image href=\"C:\\..\\My
Pictures\\4.bmp\" height=\"358\" width=\"286\"/> " +
 "<area> " +
 "<shape>Shape</shape>" +
 "<coords >Coordinates</coords>" +
 "<xref >Cross-reference</xref>" +
 "</area>" +
 "</imagemap>";
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(xml);
 return doc.DocumentElement;
}

In particular, Argument type=”Tag” is a special Argument available for any External

method specified in the externalMethodId attribute on an ElementDef. This

argument specifies the actual caption that Quark XML Author displays in the

context menu that was just clicked. So for example, in Figure 21‑1 below, there are

two insertable contexts for an image: Image(Child of paragraph) OR Image(Child

of Topic Body). Both will call the same EI method, getImage. Tag will contain the

actual caption which the user clicked. It might be required by an EI for context.

<Method id=” getImage “ assembly=” InsertEI”

class=”Invision.Xpress.Extensible.InsertElementManager” method=”GetImage”/>

Here is how the method looks:

public XmlElement GetImage()
{
 string xml = "<imagemap><image href=\"C:\\..\\My
Pictures\\4.bmp\" height=\"358\" width=\"286\"/> " ;
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(xml);
 return doc.DocumentElement;
}

EXTENSIBILITY INTERFACE USE CASE STUDY

352 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 21‑1: Image Contexts

In the above case, if user chooses the Image (Child of paragraph), the Tag argument

type will have the value “Image (Child of paragraph)”. This argument is not

required to be used in an EI as seen in the first GetImageMap() example.

After the external method returns, Quark XML Author will react as specified below:

If the external method returns null OR a non-XmlElement, Quark XML Author 1.

will treat that as a user cancel and simply cancel the Insert operation.

If the external method throws back an exception, Quark XML Author will 2.

consider that as a critical error and show an error dialog with the error message

contained in the thrown exception. The Insert operation is cancelled.

If the external method returns an XmlElement but the structure of the returned 3.

XML does not match the structure specified in the schema specified for that

element, Quark XML Author will throw an error dialog and cancel the Insert

operation.

If the returned XmlElement has a valid structure it is imported into the 4.

document and rendered just like a conventional Insert.

Also as seen in the figure above, to indicate that an element is insertable externally,

the context menu puts a small icon (with faceID=2109) in front of it.

Also if an externalMethodId is specified on an ElementDef, and if it has a required

Choice Collection, the submenu which is normally shown will not be shown. In

Figure 21‑2, the Image Map element uses the following definition, which does not

make an external method call:

<ElementDef name="imagemap">
 <Section>
 <Choice maxOccurs="unbounded">
 <SectionType name="image"/>

EXTENSIBILITY INTERFACE USE CASE STUDY

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 353

 <SectionType name="area"/>
 </Choice>
 </Section>
 <Attributes>
 ...
 </Attributes>
 </ElementDef>

In Figure 21‑3, Image Map uses the following definition, which does make an

external method call:

<ElementDef name="imagemap" externalMethodId="getImageMap">
 <Section>
 <Choice maxOccurs="unbounded">
 <SectionType name="image"/>
 <SectionType name="area"/>
 </Choice>
 </Section>
 <Attributes>
 ...
 </Attributes>
 </ElementDef>

Figure 21‑2: Image Map, no EI

EXTENSIBILITY INTERFACE USE CASE STUDY

354 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 21‑3: Image Map, with EI

In such cases, the EI has the responsibility to show the dialog prompting the user

for the child fragment and construct the fragment with the correct child element in

it.

Normally, the fragment that is imported externally will be completely editable

within the Quark XML Author UI. If there is a requirement for the fragment to be

left alone by Quark XML Author for the current editing session, the external

method will have to add the inv:access=”read-only”attribute (where the inv prefix

refers to the urn:xpressauthor:xpressdocument namespace) to every element in that

fragment. Here is a simple EI which does just that:

public XmlElement GetImageMap()
{
 string xml = "<imagemap
xmlns:inv="urn:xpressauthor:xpressdocument" inv:access=”read-
only”><image inv:access=”read-only” href=\"C:\\..\\My
Pictures\\4.bmp\" height=\"358\" width=\"286\"/> " +
 "<area inv:access=”read-only”> " +
 "<shape inv:access=”read-only”>Shape</shape>" +
 "<coords inv:access=”read-only”>Coordinates</coords>" +
 "<xref inv:access=”read-only”>Cross-reference</xref>" +
 "</area>" +
 "</imagemap>";
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(xml);
 return doc.DocumentElement;
}

This attribute is retained by Quark XML Author within the XOM and is stripped off

by Quark XML Author when the document is serialized or when accessing the

ExportedRoot/ExportedCurrentNode argument in an EI method.

Example 2

In this use case, the cursor is at an Empty and element “p” is valid insertable at this

location.

EXTENSIBILITY INTERFACE USE CASE STUDY

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 355

In the first solution, the configuration and code fragment facilitate inserting a

paragraph from the Context Menu. In the second solution, the configuration and

code fragment facilitate inserting a paragraph from a Ribbon button. Each requires a

different solution.

Context Menu

<Method id="InsertParaElementFromContextMenu" assembly="EITest"
class="EITest.EITestInsertNode"
method="InsertParaElementFromContextMenu">
 <Argument type="XomRoot"/>
</Method>

<ElementDef name="p"
externalMethodId="InsertParaElementFromContextMenu">
..
</ElementDef>
public XmlNode InsertParaElementFromContextMenu(XmlNode xomRoot)
{
XmlNode newNode =
xomRoot.OwnerDocument.CreateNode(
XmlNodeType.Element, "p", xomRoot.NamespaceURI);
newNode.InnerText = "Some Text";
return newNode;
}

Ribbon Button

<Method id="InsertParaElementFromMenu" assembly="EITest"
class="EITest.EITestInsertNode"
method="InsertParaElementFromMenu">
 <Argument type="XomPreviousNode"/>
 <Argument type="Delegates">
 <Delegate>InsertNode</Delegate>
 </Argument>
 </Method>
<command idMso="Help" visible="xa">
 <!--<ExtensibilityMethod id="About"/>-->
 <ExtensibilityMethod id="InsertParaElementFromMenu"/>
</command>
 public void InsertParaElementFromMenu(XmlNode previousNode,
Delegate[] delegates)
 {
 InsertNode insertNodeDelegate
= (delegates != null && delegates.Length > 0)
? delegates[0] as InsertNode : null;
 if(insertNodeDelegate != null && previousNode !=
null)
 {
 XmlNode newNode =
 previousNode.OwnerDocument.CreateNode
(XmlNodeType.Element, "p", String.Empty);
 newNode.InnerText = "Some Text";
 insertNodeDelegate(previousNode, newNode, null);
// the last parameter is null assuming there is no muliple
contexts // for the fragment being inserted.
 }
 }

MATHTYPE INTEGRATION

356 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

MathType Integration

Implementing MathType Support

Quark XML Author can be configured to support the insertion of Design Science

MathType equations. In order to include MathType equations in a Quark XML

Author document, MathType must be installed on the local machine. The version of

MathType that is required depends on the version of Word and Quark XML Author

being used. For information on which version of MathType is required, refer to the

Quark XML Author ReadMe documentation.

To configure MathType support, add an element definition that facilitates MathType

equations to the XAS.

The Element Definition uses the <OLE> node as a child of <Section>. Details on this

node are located in Section 14.5. An example of a MathType element definition is

shown below.

<!-- MathType support -->
<ElementDef name="content" friendly="Math Equation">
 <OLE readonly="false">
 <MathTypeEquation exportFormat="GIF"
saveOLEObject="true" translator="MathML2 (no namespace).tdl"
includeTranslator="true" includeMathTypeData="true"/>
 </OLE>
 <Attributes>
 <!-- Attribute information omitted -->
 </Attributes>
</ElementDef>

<ElementDef name="foreign" friendly="Math Equation Section"
style="Paragraph_InV">
 <Section>
 <Sequence>
 <OLEType name="content"/>
 </Sequence>
 </Section>
 <Attributes>
 &univ-atts;
 <AttributeType name="class"/>
 <AttributeType name="outputclass"/>
 </Attributes>
</ElementDef>

Quark XML Author can read and write both MTEF and MathML data formats.

All error codes returned by MathType are recorded by Quark XML Author and they

can be looked up in the MathType SDK help manual. Also, if MathType is not

installed, or the installed copy is a prior version or not valid, the presence of a

MathType definition in the Quark XML Author configuration files will result in

MATHTYPE INTEGRATION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 357

non-editable images of the equations displayed on the Word canvas. Equation

content will be properly preserved and round-tripped.

For a given translator, if you encounter an issue where characters, translator names

or MathType data are not saved, please contact Design Science technical support for

assistance. If a translator is not producing valid XML, that XML will not be saved by

Quark XML Author.

Serialization

The saveOLEObject attribute must be used instead of saveMTEF to reliably preserve

and render MathType equation dimensions.

Developer Notes

Serialization of equations has been changed to use the same methodology as

embedded Word documents using Open XML. The attributes for height, width,

heightDpi, widthDpi will continue to be serialized, but will be extracted from the

Open XML whenever the XML Author document is saved or rendered for viewing.

See “Image sizing logic”.

This should help to improve performance for save and open operations and will

stabilize XML Author to render correctly sized equations. Do note that there may

still be some ‘undefined’ behavior related to equation sizing. This is particularly

true of Word 2003 especially when opening the first XML Author instance

document during a Word session. Though not as severe as the behavior in 2003,

Word 2010 exhibits undesirable, first instance behavior when opening legacy

documents where equations exceed the canvas margins (galley).

OLE WORD DOCUMENT INTEGRATION

358 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

OLE Word Document Integration

Allows the user to embed a fully functional Word document within an XML Author

document. The user can edit the document without restrictions, but the intended

use of this feature is to support embedded large/complex tables. The embedded

table may be any size with a maximum of 63 columns.

This OLE object can be inserted directly into an XML Author document, but when

the user needs to edit, editing is performed in a separate Word window.

All Word table features are available including all tables style features. Banding,

rotated text, etc.

Embedded Table User Experience

The user is able to insert Word tables at locations within the document structure

that are allowed according to configuration. At these locations, the Context Menu

and insertables list displays “Word Table”. When the user inserts a Word Table, the

system displays a scaled rendering of the embedded table on the canvas in XML

Author.

Figure 23‑1: New Word Table on the XML Author canvas

The scaled rendering displays the content of the first “printed” page of the table.

OLE WORD DOCUMENT INTEGRATION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 359

Figure 23‑2: First page of a Word Table on the XML Author canvas

Editing

To edit, double-click the table image. A new Word window is launched containing

the table content.

The Word table is ready for editing.

Viewing

If the XML Author document or the embedded Word document is designated as

read-only (in the XML or in the schema definition), the new Word window is

launched in a password protected read-only mode.

Copy and Paste

User is able to copy content from other applications, such as Excel, and paste that

content into the Word table editor. This allows the user to maintain content in

applications other than Word.

Implementing Embedded Table Support

To configure OLE Word Document support, add an element definition that

facilitates OLEWordDocuments to the configuration. Because the user can edit the

Word document “without restrictions”, the configuration does not have to specify

all elements possible, but instead only has to specify table styles and settings and

metadata and inline element definitions.

OLE WORD DOCUMENT INTEGRATION

360 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Figure 23‑3: Configuration-XSD OLEWordDocument definition

Quark XML Author supports the following OLEWordDocument elements:

ParaType, TableType, TableRowType, TableCellType: used to specify the metadata

and inline element definitions for the associated element.

OLEWordDocument contains the following attributes:

The following attributes specify the initial formatting and styling of an embedded

Word table. <TableStyles> defined in the configuration are not available.

Table 23‑1: OLEWordDocument Attributes

Attribute Name Required Definition

defaultColumnCount no Default number of columns.

Valid values are 1-63. If a

number greater than 63 is

specified, then 63 is used. If

not specified, the default is 3.

defaultRowCount no Default number of rows. If not

specified or not a valid

number, the default is 3.

tableStylesTemplate no Specifies the location and

filename of the Word template

(.dotx file) for custom table

styles. The location may be

specified as a fully qualified

path or as a relative path to the

main XML Author template

(.dotx file).

Only table styles in this

tableStylesTemplate are

OLE WORD DOCUMENT INTEGRATION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 361

Starter documents

The custom table style template acts as a starter document for the table because it

can include starter content for the embedded Word table. For more information, see

“Starter Documents and Templates”. The template may include headers and footers,

but these are not rendered on the XML Author Word canvas unless the text boxes

are included for content such as page number. It is also recommended that the top

and bottom margins of the table template be smaller by about 1/4 inch than the

corresponding margins used in the template.dotx in order to minimize the creation

of unnecessary blank pages.

Sample configuration

In this sample configuration, the Element Definition uses the <OLE> node as a child

of <Section>. For details on this node, see “OLE” and “OLEWordDocument”.

<!-- Sections -->
<ElementDef name="body" friendly="Section Body" visible="false">
 <Section>
 <Choice minOccurs="0" maxOccurs="unbounded">
 <!-- Other Choice items elided -->
 <OLEType name="wordTable"/>
 </Choice>
 </Section>
</ElementDef>

An example of an element definition using OLEWordDocument is shown below.

When the embedded file is created, it is initialized with a default table according to

the configuration-specified attributes.

<!-- OLE Table -->

Attribute Name Required Definition

available to the user in this

scenario. <TableStyles> defined

in the configuration are not

available. However, you can

refer to “TableStyle” for an

example of the user interface.

defaultWordTableStyle no Specifies a style in the

tableStylesTemplate that is

used as the default table style

when a user initially inserts a

table. If not specified or if a

table style is specified that is

not in the template, the system

uses the TableGrid style.

Built-in Microsoft Word table

styles are not directly

supported, but you can derive

a new custom style from a

built-in style.

OLE WORD DOCUMENT INTEGRATION

362 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

<ElementDef name="wordTable" friendly="Word Table"

referenceAttribute="conref">

 <OLE readonly="false">

 <OLEWordDocument defaultColumnCount="4"

 defaultRowCount="5"

 tableStylesTemplate="table-template.dotx"

 defaultWordTableStyle="My Style" />

 </OLE>

 <Attributes>

 <AttributeType name="id"/>

 <AttributeType name="conref"/>

 </Attributes>

 &extensibility;

</

ElementDef

>

Images

Images that are inserted in the embedded Word document are stored at a location

specified in the configuration. See “ImageFilePath”.

Emphasis

The OLEWordDocument element can be configured to allow the user to apply

emphasis to text-based elements.

The following shows a emphasized paragraph within an embedded Word document.

Figure 23‑4: A paragraph with emphasis applied

The <ParaType> node contains a collection of <EmphasisType> nodes that specify

the allowed emphasis.

OLE WORD DOCUMENT INTEGRATION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 363

Figure 23‑5: Configuration-XSD OLEWordDocument > EmphasisType definition

The <EmphasisType> node contains the following attributes.

Table 23‑2: OLEWordDocument > ParaType> EmphasisType Attributes

Attribute Name Required Definition

name Yes Contains the name of an

EmphasisDef defined earlier in

the configuration. An

EmphasisDef that is defined for

an XML Author document may

be used/repurposed for this or

a separate EmphasisDef may be

defined that is only used for

OLEWordDocument.

charStyle Yes Specifies the “Word character

style” that should be applied to

text that receives this

emphasis. This may be a

custom character style that you

have put in the

“tableStylesTemplate” in

<OLEWordDocument>.

This only applies to Emphasis

in ParaType. The other child

elements are table elements

that do not directly contain

text and therefore do not

require this style setting.

Word has character and

paragraph styles. In the Word

Styles tool, the icon to the

right is an “a” for character

styles or the para marker icon

or it can be both. A style can

OLE WORD DOCUMENT INTEGRATION

364 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

In the sample configuration, the following emphasis are made available for

paragraphs: Intense Reference and Intense Emphasis.

Figure 23‑6: Paratype > EmphasisType definitions

Nested emphasis is supported, but configuration rules for what and how are

ignored. Style is ignored. Friendly and Attributes defined for the emphasis are

used/respected/honored. Read-only settings are honored.

Metadata

The OLEWordDocument element can be configured to allow the user to apply

metadata to the following elements:

Paragraphs •

Tables •

Table rows •

Table cells •

Inline elements •

For table, row, cell, inline elements, when the user selects content and applies

metadata, XML Author wraps the selection in a Word Content Control. The user

sees the Control with its Titletab (Table, row, cell, inline).

For paragraph, XML Author does not use a Word Content Control because it has

certain limitations. Therefore, XML Author handles paragraphs internally. No

content control is shown on the Word canvas.

Attribute Name Required Definition

act as both a character and a

paragraph style. A style that is

both can be used in our

configuration, but not a style

that is only a paragraph style.

OLE WORD DOCUMENT INTEGRATION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 365

Figure 23‑7: Metadata data applied to various element types in an embedded Word

document

Figure 23‑8: Metadata data applied to various element types in an embedded Word

document

The OLEWordDocument element may contain the following child elements which

are used for storing metadata: TableType, TableRowType, TableCellType, and

ParaType. See “Table” for details on table elements.

These OLEWordDocument child elements are used for tracking metadata that has

been applied by the user or the system. When the user right-clicks on something,

the feature is invoked. When metadata is applied to a piece of content in the OLE

Word document a corresponding element is created in the Pseudo XOM and a

corresponding Word Content Control (paragraphs are handled differently) is

created in the Word document. The metadata that is applied by the user is stored in

the attributes of the Pseudo XOM element. What is the Psuedo XOM? It is a

collection of nodes similar to the XML Author XOM, but much lighter. It does not

track every content element in the embedded Word document. It only contains

nodes for content elements to which metadata has been applied. Nodes/ Content

Items are created on demand as a result of passing XomCurrentNode to an EI

method. In the same way that a custom dialog requires XomCurrentNode to view

and edit attributes for the current element. The RemoveContentItem delegate is

used when the user has deleted all metadata for a content element. See

“RemoveContentItem”.

The configuration of the OLEWordDocument child elements includes the definition

of each attribute where the metadata will be stored. Each attribute is defined using

an AttributeType element. The AttributeType references an AttributeDef already

defined in the configuration.

OLE WORD DOCUMENT INTEGRATION

366 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Note that the following are reserved names in the Psuedo XOM: table, row, cell, p.

Each content type node, such as <ParaType>, contains a collection of

<AttributeType> nodes that describes the attributes used for storing metadata.

Figure 23‑9: Configuration-XSD OLEWordDocument > AttributeType definition

The <AttributeType> node contains the following attribute.

Table 23‑3: OLEWordDocument > ParaType> AttributeType Attributes

The following example configuration shows the definition of table attributes for

storing metadata.

Attribute Name Required Definition

name Yes Contains the name of an

AttributeDef defined earlier in

the configuration. An

AttributeDef that is defined for

an XML Author document may

be used/repurposed for this or

a separate AttributeDef may be

defined that is only used for

OLEWordDocument.

OLE WORD DOCUMENT INTEGRATION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 367

The following example configuration shows the definition of table row attributes for

storing metadata.

The following example configuration shows the definition of table cell attributes for

storing metadata.

OLE WORD DOCUMENT INTEGRATION

368 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

The following example configuration shows the definition of paragraph attributes

for storing metadata.

Metadata can also be applied to inline elements/emphasis.

Metadata default values

The default values specified for the referenced AttributeDefs are used as the default

values for the metadata of “new” elements added to an embedded Word document.

For example,

AttributeDef name=”lang” default=”en”

This is known as prepopulating. In addition to prepopulating, the configuration

defines what attributes are available for storing metadata and what attributes may

be stored during the serialization process. Prepopulating is performed if the element

is created by Core XML Author as opposed to an EI. If the element is created by an

EI, the EI takes responsibility for which attributes are populated.

Metadata and use cases

Table 23‑4: Metadata Use Cases in OLE Word Document

Action Result

Copy and paste an element containing

metadata.

New element is created that contains a copy of

the original element’s content and its metadata.

Paragraph 2 is merged into paragraph 1. Both

paragraphs have metadata.

The content of paragraph 2 is appended to

paragraph 1. Paragraph 1’s metadata is

unaffected. Paragraph 2’s metadata is not

preserved.

OLE WORD DOCUMENT INTEGRATION

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 369

Action Result

Enter is pressed in a paragraph causing a new

paragraph to be created. The original paragraph

has metadata.

Metadata is cloned if the cursor was positioned

at the start of the paragraph when the user

pressed Enter. Otherwise metadata is not

cloned.

SMART CONTENT

370 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Smart Content

This section describes Smart Content serialization formats.

Overview

The Smart Content model is designed to allow the user to author content in a non-

constrained authoring experience. The content created by the user is serialized to

multiple formats.

 <WordprocessingML>
 
</OLEWordDocument element>

Given an embedded Word Table in an XML Author document.

<MyOLEWordDocument>
 <WordprocessingML> Base-64 encoded contents of the word binary
representation of the OLE object </WordprocessingML>
 <image dxaOriginal="width in twips" dyaOriginal="height in
twips" defaultStyle="some styling charactertistics ">
 base 64 encoded emf representation of the OLE object.
 </image>
 <smart-content xmlns="urn:schemas-quark-com:smart-content:2.0">
 <tbl>
 <tblPr/>
 <tblGrid/>
 </tbl>
 </smart-content>
 <smart-content xmlns="urn:schemas-quark-com:smart-content:1.1">
 <table>
 <tgroup/>
 </table>
 </smart-content>
</MyOLEWordDocument>

The two smart-content nodes are the resultant of calls to the TransformEngine. The

content returned by the TransformEngine is of the smart content 2.0 format and

has to be filtered by XML Author to create the required output.

<topic xsi:schemaLocation=”urn:schemas-quark-com:smart-content:2.0 Smart-

Content%20(topic).xsd” xmlns=”urn:schemas-quark-com:smart-content:2.0”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

 <title/>
 <body>
 <tbl>
 <tblPr/>
 <tblGrid/>
 </tbl>
 </body>
</topic>

The same is true for the smart content 1.0 output format.

SMART CONTENT

372 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

<topic xsi:schemaLocation="urn:schemas-quark-com:smart-

content:1.1 Smart-Content%20(simple%20topic).xsd"

xmlns="urn:schemas-quark-com:smart-content:1.1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <title/>
 <body>
 <table>
 <tgroup cols="">
 <colspec></colspec>
 <tbody>
 <row>
 <entry></entry>
 </row>
 </tbody>
 </tgroup>
 </table>
 </body>
</
topic
>

Why are there empty values in the smart content?

During serialization of regular XML Author content, attributes without values,

empty strings, are intentionally not serialized (cleanup). This applies to attributes

that XML Author manages, that are in the configuration. Unmanaged attributes are

allowed and are serialized. XML Author does not modify them in any way. However,

during serialization of that embedded Word documents, this “cleanup” of empty

attributes is not performed.

Serializing Metadata

This section discusses the serialization of metadata for various table elements.

The metadata that is serialized is based on the attributes defined for each element

type in the OLEWordDocument definition.

For example, the following example configuration shows the definition of table

attributes for storing metatdata.

The following shows the serialization of table-level metadata.

SMART CONTENT

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 373

IMAGES

374 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Images

The Word canvas

If an image is greater than available canvas real estate, then the image is resized to

fit within the available canvas.

Image sizing logic

Multiple changes have been made with regard to the logic used to obtain and

serialize image dimensions.

Implemented logic to normalize DPI metrics as soon as an image is inserted into •

an XML Author document. Since DPI is serialized as an integer value, all DPI

will be managed internally as integers thus eliminating the need to round DPI

values on demand.

Implemented new method to normalize point values to a granularity of 1/20 •

point. This is used following resize to limit rounding errors thus preventing

dimensional drift.

Resize logic was modified to use normalized point size of inline shapes following •

resize. This helps to limit rounding problems and to stabilize dimensional drift.

Internal references and definition for DPI variables, properties, etc. were •

modified to change the data type from floating point to integer for the purpose

of limiting rounding errors which cause image dimensions to drift upon save,

close, reopen cycles.

The point / pixel conversion logic was refactored to properly round float values •

during conversion. This is used during operations where images are inserted,

refreshed, resized or replaced to limit rounding errors thus preventing

dimensional drift.

Rounding Error Issue

Current image size behavior in XML Author is governed by actual image metrics

that are extracted from the image binary itself wherever possible. All supported

graphics files that contain image metrics use the same data types.

Height and width (pixels) are stored as an integer data type.

Horizontal and vertical resolution (DPI) are stored as a float data type.

IMAGES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 375

However, meta-files (EMF, EMZ, WMF, WMZ) can store horizontal and vertical

resolution as non-integer values. For example, 599.501. All other graphic formats

store resolution as whole number values. For example, 600.000.

Facts and conversion factors:

DPI = dpi = dots per inch = dots / inch •

1 inch = 72 points •

Microsoft measures the physical size of images in points.

Persistence and certain calculations require pixels and dpi, therefore we must

convert back and forth between Microsoft points and pixels-dpi.

Point values may change when images are inserted, resized, refreshed. At the time

of these events, point values are rounded to the nearest 1/20 or 0.05 so that point

values never deviate from the necessary degree of precision required.

Precision requires that we manage values as integers, this requires that we round

resolutions that are not whole numbers to be whole numbers. This only applies to

meta-files (EMF, EMZ, WMF, WMZ).

The image metrics must be serialized as integer values using pixels and dpi as the

unit of measure for consumption by other downstream processes.

Some precision is lost due to rounding, but rounding is required to maximize the

consistency of calculations across all graphic types.

To inspect the image metrics of a given image file use Microsoft Office Picture

Manager that is installed in the Office Tools folder. Do not use Microsoft Paint for

this purpose. It is unreliable.

IMPLEMENTING A CUSTOM XML RESOLVER

376 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Implementing a Custom XML
Resolver

Implementation Overview

Although Quark XML Author uses an internal XML Resolver to resolve such items

as DTD declarations and Schema references, it may be necessary to implement a

custom resolver.

A custom resolver is implemented via an external DLL that is called by an

Extensibility Interface method. The custom resolver must implement the

IXmlResolverProvider interface, shown below.

public interface IXmlResolverProvider
{
 XmlResolver GetResolver(XmlAuthorOperationType opType, string
input);
}

The XMLAuthorOperationType is an enumeration that denotes what operation is

being performed, allowing the IXmlResolverProvider.GetResolver method to

determine the appropriate XmlResolver to return:

public enum XmlAuthorOperationType
{
 Transform, // import/export operations, such as when a
document is first loaded.
 Internal, // All internal operations.
 XSLTTransform // Used for loading XSLT stylesheets
}

Transform: This is specified when an initial document is loaded and a stylesheet is

specified in the AppConfig’s namespace section. It is also used when a document is

exported either via the Save command, or Create/Display Renditions.

Internal: This is used for all internal processing. The interpretation of

XmlAuthorOperationType is entirely dependent on the custom use case for which

this Resolver is designed. It can choose to totally ignore the type of operation for

which the resolver is requested and return a single resolver instance.

XSLTTransform: This is used when an XSLT transform is loaded:

XslCompiledTransform xsl = new XslCompiledTransform();

xsl.Load(xslPath, new XsltSettings(true, true),

resolverProvider.GetResolver(XmlAuthorOperationTypes.XSLTTransfor));

IMPLEMENTING A CUSTOM XML RESOLVER

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 377

A custom resolver DLL consists of at least two parts: the implementation of the

IXmlResolverProvider interface and the class and method that will be called from

the Quark XML Author Extensibility Interface. An example is shown below.

Public Class MyResolver
{
 public void GetACustomResolver(Delegate[] delegates)
 {
 //call the delegate here with a new instance of the
IXmlResolverProvider implementation.
 SetXmlResolver sxr = delegates[0] as SetXmlResolver;
 Sxr(new MyXmlResolverProvider());
 }
}

//Sample custom resolver class that returns a XmlUrlResolver for
all Quark XML Author internal operations and null otherwise..
Public class MyXmlResolverProvider : IXmlResolverProvider
{
 Public XmlResolver GetResolver(XmlAuthorOperationType opType,
string input)
 {
 //return new XmlUrlResolver();
 If(opType == XmlAuthorOperationType.Internal)
 Return null; //No resolver for Quark XML Author
internal operations.
 Else
 Return new XmlUrlResolver(); //return URL
resolver for all other cases
 }
}

Finally, to implement the custom resolver, the EI method must be defined to call it.

Typically, this method would be referenced in the <Connect> event in

AppConfig.xml where this resolver will be used to set a global Resolver for all

documents opened in Quark XML Author. An example is shown below.

<Method id=”GetResolver” assembly=”CustomResolver” class=”MyResolver”

method=”GetACustomResolver”>

 <Argument type=”Delegates”>

 <Delegate>SetXmlResolver</Delegate>

 </Argument>

</Method>

HOW MICROSOFT AND QUARK SUPPORT LANGUAGES AND CULTURES

378 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

How Microsoft and Quark Support
Languages and Cultures

The Microsoft .Net Framework organizes language support in the following way.

Each language has a main language resource assembly. For example, English (en).

Within each language, there may be culture / locale specific versions of a language

resource assembly. For example, United States English (en-us) or British English (en-

gb). Quark XML Author provides the same support for main language and locale

specific language resources.

Figure 27‑1: Locale specific versions of English supported by .Net

In addition, we need to differentiate between the Display Language and Editing

Language within the context of Microsoft Office applications. The Display Language

is the language displayed in the user interface (UI) of the Microsoft Office

application. This includes menu items, toolbar buttons, ribbons, ribbon buttons,

backstage views and Help. The Display Language only supports main language

resources such as English (en), but not locale specific language resources such as

United States English (en-us). The Editing Language is the language of the content

that you are authoring on the Word canvas. This includes language-specific features

such as dictionaries and grammar checking. The Editing Language supports locale

specific language resources, “Figure”.

HOW MICROSOFT AND QUARK SUPPORT LANGUAGES AND CULTURES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 379

Figure 27‑2: The user can specify both an editing language and a display language

Microsoft and Quark XML Author support using one language for the Display

Language and a different language for the Editing Language. However, Quark XML

Author does not support the authoring of multiple languages within a single Quark

XML Author document.

Presently, Quark XML Author is distributed with the following Display language

resources:

English main language •

Spanish main language •

Japanese main language •

French main language •

Quark XML Author supports the following languages:

Non-IME:

English •

Spanish •

French •

Japanese •

Chinese (Traditional) •

Chinese (Simplified) •

Korean •

Vietnamese •

Arabic •

HOW MICROSOFT AND QUARK SUPPORT LANGUAGES AND CULTURES

380 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Hebrew •

Support for these languages must be enabled in Microsoft Word. East Asian

languages will also require IME to input characters.

Figure 27.3: Choosing an editing language

Bidirectional language support

Bidirectional languages (right-to-left languages) refers to any writing system that is

written from right to left and includes languages that require contextual shaping,

such as Arabic, and languages that do not. Right-to-Left languages are written and

read mainly from right to left, but some portions of the text, such as numbers and

embedded Latin languages (e.g. English) are written and read left to right.

Bidirectional language support in Microsoft Office

Microsoft Office supports right-to-left functionality and features for languages that

work in a right-to-left (or a combined right-to-left, left-to-right) environment for

entering, editing, and displaying text.

Bidirectional language support in Quark XML Author

XML Author supports authoring in LTR and RTL layouts depending on the default

editing language set in MS Word.

To support Bidirectional Text in XML Author, the following option must be disabled

in Microsoft Word:

HOW MICROSOFT AND QUARK SUPPORT LANGUAGES AND CULTURES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 381

Figure 27.4: The option to automatically switch keyboard to match language of

surrounding text must be disabled.

Configuring the XAS to allow support of direction attributes for elements

The Quark XML Author structure must be configured to allow support for direction

attributes of elements. Use the directionAttribute datatype to enable Quark XML

Author to support bidirectional text.

An example is shown below:

<Attributes>
…
<AttributeDef name="dir" datatype="directionAttribute"
visible="false"/>
<AttributeDef name="tablestyle" datatype="tableStyle" friendly=""
visible="false"/>
…
</Attributes>
The following corresponding changes are required in the
XpressSchema.xsd file:
<xs:attributeGroup name="fieldAttributes">
…
 <xs:enumeration value="directionAttribute"/>
…
</xs:attributeGroup>
<xs:attributeGroup name="tableStyle">
…
 <xs:attribute name="tableDirection" type="xs:string"
use="optional" />
…
</xs:attributeGroup>

Configuring the user interface for bidirectional language support

The dirattribute sets the text direction for elements regardless of the text direction

of the document. Once this attribute is set, UI controls can be used to set text

direction.

HOW MICROSOFT AND QUARK SUPPORT LANGUAGES AND CULTURES

382 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

For example, the Text Direction buttons can be configured in config.xml to

facilitate the insertion of elements with a right-to-left or left-to-right text direction,

as in Microsoft Word.

<buttonGroup id="TextDirection">
 <toggleButton id
="TextDirectionLeftToRight"imageMso="TextDirectionLeftToRight">
 <InternalClass name="ToggleReadingDirectionControl"
directionAttribute="ltr" />
 </toggleButton>
 <toggleButton id="TextDirectionRightToLeft"
imageMso="TextDirectionRightToLeft">
 <InternalClass name="ToggleReadingDirectionControl"
directionAttribute="rtl" />
 </toggleButton>
</buttonGroup>

Figure 27-5: text direction buttons.

Configuring bidirectional language support at the content level

Use the TextDirection formatting type to format attributes that will allow different

text runs within a single paragraph.

Example:

<Formatting>
...
<TextDirection name="ph" friendly="direction"
TextDirectionAttributeName="dir"/>
...
 </Formatting>

The following changes must be made to the XpressSchema.xsd file:

 <xs:element name="XpressSchema">
 <xs:complexType>
 <xs:sequence>
 ...
 ...
 <xs:element name="TextDirection" minOccurs="0">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string"
use="required"/>
 <xs:attribute name="friendly" type="xs:string"
use="optional"/>
 <xs:attribute name="TextDirectionAttributeName"

HOW MICROSOFT AND QUARK SUPPORT LANGUAGES AND CULTURES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 383

type="xs:string" use="required"/>
 ...
 ...
 </xs:sequence>
 </xs:complexType>
</xs:element>

Configuring bidirectional language support at the element level

Text runs will be created for blocks of text whose text direction is different as

compared to the element.

Root snippet:

<topic id ="" xmlns:inv="urn:xpressauthor:xpressdocument"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink"
xsi:noNamespaceSchemaLocation="BUSDOCS.xsd" xml:lang="ar"
dir="rtl">
<title/><body/></topic>

The XML snippet generated for left-to-right text in a paragraph:

<body>
 <p widow-orphan="true" xml:id="IDd3ab0288-d634-4e82-90b1-
c1ecd1b3ee5f">ثمحةشس <ph dir="ltr"> sample text </ph>
 </p>
</body

Add the following to the element definition to support multi-directonal text runs:

<Formatting>

 <FormattingType name="ph"/>
</Formatting>

Configuring bidirectional language support at the document level

To configure bidirectional language support at the document level, see dir.

IME BASED:SUPPORTING NEW LANGUAGES

384 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

IME based:Supporting New
Languages

Quark XML Author supports localization of the software to any required language

that is supported by Microsoft Word. This section describes the steps that must be

performed for Quark XML Author to support a new Display Language and who is

responsible for each step.

What Must Be Translated

The strings that are displayed in Word UI controls are stored in language specific

resource files. These strings can be translated to new languages. These UI controls

include:

Menu items •

Buttons •

Ribbons •

Forms •

Dialogs •

Error Messages •

Context Menus •

Translation Process Overview

The following swim lane diagram provides an overview of the translation process.

IME BASED:SUPPORTING NEW LANGUAGES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 385

Figure 28‑1: Translation process overview

(External)

The role of Translator may be performed by Quark’s current contracted translation

service or by a Quark partner. A Quark Developer or Translation Coordinator

provides a spreadsheet which requires translation to the Translator. From the

Translator’s perspective, the process is straightforward in that they receive a

spreadsheet essentially containing the following columns:

Id •

English •

Translation •

Comments •

The Translator is responsible for completing the Translation column. Because some

of the UI strings are acquired directly from Microsoft Word in the new language,

these strings are already completed and stored in the Translation column. For

example the UI strings for the Word features, Spell Checker and Find & Replace.

These completed strings do not need to be verified by the Translator. The Translator

is only responsible for the providing the translated string where a translated string is

not present; in other words, where cells in the Translation column are empty.

Icons (Internal)

See “Icons” and “Custom Icons”.

IME BASED:SUPPORTING NEW LANGUAGES

386 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Shortcut keys (Internal)

Quark Development acquires the shortcut keys for the new language from Microsoft

Word and its documentation. Based on this information, Quark Development

updates the shortcut keys in the Quark XML Author global shortcut keys

configuration file and DITA for Business Documents configuration for the new

language.

Professional services should refer to those efforts when creating other Quark XML

Author solutions in the new language. And if needed, Development can provide to

Professional Services a listing of all Microsoft Word shortcut keys in the new

language.

Friendlies (Internal)

In configurations, strings for friendlies must be translated.

Localization: A step-by-step example

Localizing Quark XML Author for any supported language is a straightforward

process. This section contains an example that describes the localization procedure

for Quark XML Author.

Pre-requisites

Localizing Quark XML Author requires the following components and software:

An installed copy of Quark XML Author. •

A decompilation tool for the Microsoft .Net library. •

A resource generation tool and an assembly linker tool. Please visit the following •

URLs for more information about these tools:

Assembly Linker: https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-•

assembly-linker

Resource Generator: https://docs.microsoft.com/en-us/dotnet/framework/tools/resgen-•

exe-resource-file-generator

A tool to modify the strings contained in the resource files. You may want to try •

the .NET Resourcer by Lutz Roeder for this purpose or any other tool that you

are comfortable with. The .NET Resourcer can be downloaded from the

following URL: https://www.lutzroeder.com/dotnet/

The localization procedure

Additional language support needs to be added to the existing installation of Quark

XML Author to add resources for a new language.

To add support for a new language:

Open the Quark XML Author installation folder. 1.

https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/en-us/dotnet/framework/tools/al-exe-assembly-linker
https://docs.microsoft.com/en-us/dotnet/framework/tools/resgen-exe-resource-file-generator
https://docs.microsoft.com/en-us/dotnet/framework/tools/resgen-exe-resource-file-generator
https://www.lutzroeder.com/dotnet/

IME BASED:SUPPORTING NEW LANGUAGES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 387

Duplicate the en folder at this location and rename it to the desired locality. For 2.

example, if you wish to add support for Chinese, rename the duplicated en

folder to zh. The zh folder will now contain the same resource files as the en

folder.

The zh folder will contain many resource files. The translations for all resources

contained in these files need to be added for each file. For this example, see the

localization procedure for Quark.XA.Core.Resources.dll.

Using the Decompiler tool, decompile Quark.XA.Core.Resources.dll. Once 3.

this file is decompiled, all the resources available in this file will be displayed:

Localize all of the resources available in the zh folder. 4.

a) Extract the resource file and save as either a .resources file or a .resx file.

(Files with the .resources extension can be localized using the .NET Resourcer

or any other tool of your choice. Files with the .resx extension can be opened

using any XML editing tool of your choice.) The available resources can then be

IME BASED:SUPPORTING NEW LANGUAGES

388 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

localized.

b) Save the file with a culture-specific language prefix in the name. For example

the XA.Core.Properties.ContextMenu.en.resources file for Chinese will be

renamed to XA.Core.Properties.ContextMenu.zh.resources or

XA.Core.Properties.ContextMenu.zh.resx.

All files that have been extracted and saved as .resx must be converted to the 5.

.resources format. The conversion will be accomplished using the resgen utility.

Repeat the following steps for all resource files for each dll.

a) Type the following command in the command prompt to convert

XA.Core.Properties.ContextMenu.zh.resx to

XA.Core.Properties.ContextMenu.zh.resources:

Resgen.exe <Resource File to be converted> <Target Resource File type with

extension>.For example:

Resgen.exe XA.Core.Properties.ContextMenu.zh.resx

XA.Core.Properties.ContextMenu.zh.resources

IME BASED:SUPPORTING NEW LANGUAGES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 389

b) Once all the resource files are available, recreate the resource dll using the

assembly linker. To use the assembly linker, execute the following command in

the Visual Studio Command Prompt:al.exe –target:lib –embed:<ResourceFile1>

<ResourceFile2> …. –culture:<cultureName> out:<outputdll> For example :

al.exe -target:lib -embed:XA.Core.Properties.ContextMenu.zh.resources -

embed:XA.Core.Properties.CoreUI.zh.resources -culture:zh -

out:Quark.XA.Core.resources.dll

Relaunch Quark XML Author. 6.

VARIABLE REFERENCE SUPPORT

390 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Variable Reference Support

Reference Type and Section Type block level elements in Quark XML Author can

now refer to variable content references.

Section Type Elements

For section type elements such as Lists, Tables, Paras and Container elements, the

variable content reference attribute has been kept configurable.

The element defines the attribute that can hold variable content references. For

DITA elements the attribute will be “@conkeyref“.

Example:

Configuration of the Block level element Para to be able to refer variable content

references in addition to direct content references:

<ElementDef name="p" xmlname="p" friendly="Paragraph"
referenceAttribute="conref"
variableReferenceAttribute="conkeyref“ style="Normal (XA
Heading)" calloutAttribute="outputclass">
 <Section>
 <Para defaultHyperlink="xref@format='html'">
 ….
 </Para>
 </Section>
 <Attributes>
 <AttributeType name="conref"/>
 <AttributeType name="conkeyref"/>
 <AttributeType name="outputclass"/>
 ……
 </Attributes>
</ElementDef>

Reference Type Elements

For Reference Type Elements, such as DITA Topic Refs, keyref has been assumed as

the variable reference attribute and “href” for direct referencing. The serialized

name, however, is still configurable.

Example:

<ElementDef name="refLabel" xmlname="refLabel">
 <Reference>
 <ComponentType name="reftitle"
style="XA_Body Text Indent"

excludeFromComponentContextMenu="true" xpath="//title[1]"/>
 </Reference>

VARIABLE REFERENCE SUPPORT

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 391

 <Attributes>
 <AttributeType name="format"
fixed="dita"/>
 <AttributeType name="navtitle"
friendly="Title"/>
 <AttributeType
name="href" visible="false"/>
 <AttributeType
name="keyref" visible="false"/>
 </Attributes>
</ElementDef>

Additional delegates

The following new delegates have been exposed to allow EIs to add and manage the

reference variables for a Quark XML Author document.

AssignRefVariable •

GetRefVariable •

GetAllRefVariables •

GetExportedXMLForRefVariables •

RemoveRefVariable •

The Quark XML Author Reference Resolution Engine now honors these variables

while resolving variable content references. The reference resolution gives

preference to Variable references (if the variables are defined) over direct references.

INSTALLATION OF QUARK XML AUTHOR

392 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Installation of Quark XML Author

This section provides details on how to install Quark XML Author.

Installation files are provided on a distribution media such as a CD or network

folder.

Automated installation on a new machine:

Navigate to the appropriate folder. 1.

Execute Setup.exe. 2.

Or for manual installation on a new machine:

Install in the following order:

1. If Quark XML Author version 4.0 or higher has been installed on the machine,

proceed to Step 5.

2. Navigate to the WindowsInstaller4_5 folder. For a give operating system, select

the specified installation item.

Windows Server 2003 Service Pack 1, Windows Server 2003 Service Pack 2 and •

Windows XP (64-bit)

x86 Platform: WindowsServer2003-KB942288-v4-x86.exe •

x64 Platform: WindowsServer2003-KB942288-v4-x64.exe •

Windows XP Service Pack 2 and Windows XP Service Pack 3 (32-bit) •

x86 Platform: WindowsXP-KB942288-v3-x86.exe •

Windows Vista, Windows Vista Service Pack 1 and Windows Server 2008 •

x86 Platform: Windows6.0-KB942288-v2-x86.msu •

Windows 7 and Windows Vista Service Pack 2 •

No update required •

3. Install Visual C++ Runtime Libraries (x86) Redistributable:

Navigate to the vcredist_x86 folder. 1.

Execute vcredist_x86.exe. 2.

4. Install Microsoft Knowledge Base Article 908002 patches:

INSTALLATION OF QUARK XML AUTHOR

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 393

Navigate to the KB908002 folder. 1.

Execute extensibilityMSM.msi. 2.

Execute lockbackRegKey.msi. 3.

5. Install Quark XML Author:

Navigate to the appropriate folder. 1.

Execute XML_Author.msi.2.

APPENDIX A – COLOR NAMES

394 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Appendix A – Color Names

This appendix lists all valid color names for use with the foreColor and backColor

Emphasis definition attributes.

AliceBlue

AntiqueWhite

Aqua

Aquamarine

Azure

Beige

Bisque

Black

BlanchedAlmond

Blue

BlueViolet

Brown

BurlyWood

CadetBlue

Chartreuse

Chocolate

Coral

CornflowerBlue

Cornsilk

Crimson

Cyan

DarkBlue

DarkCyan

DarkGoldenrod

DarkGray

DarkGreen

APPENDIX A – COLOR NAMES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 395

DarkKhaki

DarkMagenta

DarkOliveGreen

DarkOrange

DarkOrchid

DarkRed

DarkSalmon

DarkSeaGreen

DarkSlateBlue

DarkSlateGray

DarkTurquoise

DarkViolet

DeepPink

DeepSkyBlue

DimGray

DodgerBlue

Firebrick

FloralWhite

ForestGreen

Fuchsia

Gainsboro

GhostWhite

Gold

Goldenrod

Gray

Green

GreenYellow

Honeydew

HotPink

HotTrack

IndianRed

Indigo

Ivory

Khaki

APPENDIX A – COLOR NAMES

396 | Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide

Lavender

LavenderBlush

LawnGreen

LemonChiffon

LightBlue

LightCoral

LightCyan

LightGoldenrodYellow

LightGray

LightGreen

LightPink

LightSalmon

LightSeaGreen

LightSkyBlue

LightSlateGray

LightSteelBlue

LightYellow

Lime

LimeGreen

Linen

Magenta

Maroon

MediumAquamarine

MediumBlue

MediumOrchid

MediumPurple

MediumSeaGreen

MediumSlateBlue

MediumSpringGreen

MediumTurquoise

MediumVioletRed

MidnightBlue

MintCream

MistyRose

APPENDIX A – COLOR NAMES

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 397

Moccasin

NavajoWhite

Navy

OldLace

Olive

OliveDrab

Orange

OrangeRed

Orchid

PaleGoldenrod

PaleGreen

PaleTurquoise

PaleVioletRed

PapayaWhip

PeachPuff

Peru

Pink

Plum

PowderBlue

Purple

Red

RosyBrown

RoyalBlue

SaddleBrown

Salmon

SandyBrown

SeaGreen

SeaShell

Sienna

Silver

SkyBlue

APPENDIX B – CHANGE LOG

398 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Appendix B – Change Log

Changes in version 6.3

Changes in version 6.3 included the following:

AdditionsNew Delegates

GetnodeDirtyType •

Changes in version 6.2

Changes in version 6.2 included the following:

AdditionsNew Delegates

SetReferenceAttributes •

RemoveReferenceAttributes •

SetListRestartContinueNumbering •

RemoveRefVariable •

Changes in version 6.1

Changes in version 6.1 included the following:

AdditionsNew Delegates

GetExportedXMLForRefVariables •

Changes in version 6.0

Changes in version 6.0 included the following:

AdditionsThe following additions were made in version 6.0.

Variable reference support

New Delegates

AssignRefVariable •

GetRefVariable •

GetAllRefVariables •

ResolveReference •

APPENDIX B – CHANGE LOG

Quark XML Author 2015 October 2018 Update for Microsoft Word — System Admin Guide | 399

GetInsertableElements •

GetNodeDefProperties •

New Argument type

StyleListParents •

Changes

The following APIs were changed in version 6.0

Changed Delegates

GetExtensibleUserInterface •

InsertNode •

DeleteNode •

InsertEmphasis •

InvokeMethodID•

LEGAL NOTICES

400 | QUARK XML AUTHOR 2015 OCTOBER 2018 UPDATE FOR MICROSOFT WORD — SYSTEM ADMIN

Legal notices

Quark XML AuthorTM for Microsoft® Word System Administration
Guide

Copyright © 2022. All rights reserved. No part of this document may be reproduced

in any form, including photocopying or translation to another language, without

prior written consent of Quark Software Inc.

Copyright protection claimed includes all forms and matters now and hereinafter

granted protection by statutory or judicial law, including unlimited protection for

screen images generated from the software programs. Such images include but are

not limited to windows, icons, and report displays.

This manual is provided without any warranty of any kind, either expressed or

implied. Quark Software Inc. shall not be liable to any person or entity with respect

to any liability, loss, or damage to be caused directly or indirectly by this manual.

Information in this document is subject to change without notice, and does not

represent a commitment on the part of the vendor. The software described in this

manual is furnished under a license agreement and may be used or copied only in

accordance with the terms of the agreement. No part of this document may be

reproduced or transmitted without permission from Quark Software Inc.

Trademark Acknowledgments

Any or all products or brand names mentioned in the document are trade names,

service marks, trademarks, or registered trademarks of their respective owners.

	Preface	
	Why Quark XML Author?	
	Features	
	Usability	
	Enterprise Fitness	

	Using This Manual	
	Intended Audience	

	Configuration Overview	
	Configuration Synopsis	
	Word Configuration	
	Disabling commands	
	Repurposing commands	
	Special considerations: command and buttons	
	User Interfaces	

	Dynamic Configuration	

	Configuration: ShortcutKeys	
	ShortcutKeys Configuration in the AppConfig File	
	ShortcutKeys Configuration in the DocConfig File	
	Associating Shortcut Keys with Menu Items and CommandBarButtons	
	ShortcutKey	
	Supported Keys	
	Unsupported Keys	
	InternalClass	
	ExtensibilityInterface	
	Global Shortcut Key File: Disabling Shortcut Keys	

	Configuration: Ribbon, Office Menu, and Backstage View	
	Single and Multiple Ribbon Configurations	
	Single Ribbon	
	Multiple Ribbons	
	Example	

	Ribbon Strings and Resources	
	Word Backstage View	
	Ribbon Nodes	
	Icon IDs for use in imageMso	
	<box>	
	<button>	
	<buttonGroup>	
	<checkBox>	
	<command>	
	<commands>	
	<contextualTabs>	
	<customUI>	
	<dropDown>	
	<group>	
	<menu>	
	<menuSeparator>	
	Word Backstage View	
	Quick Access Toolbar (QAT)	
	<ribbon>	
	<separator>	
	<splitButton>	
	<tab>	
	<tabs>	
	<toggleButton>	
	Unique Ids	
	Undo	

	Printing	
	Word 2010 and later	

	Hiding/Disabling Ribbon Tabs for Third-Party Software	

	Application Configuration: Internal Classes	
	AcceptRevision	
	AssignAttribute	
	ChangeToList	
	ChangeToPara	
	ClearUndoStack	
	Copy	
	CreateRendition	
	filter	
	StyleSheet Child Nodes	
	Using CreateRendition to Load External Objects	

	Cut	
	DeleteComment	
	DeleteTable	
	DeleteTableCol	
	DeleteTableRow	
	DocumentAttributes	
	DocumentClose	
	DocumentNew	
	DocumentOpen	
	filter	

	DocumentOpenWord	
	DocumentSave	
	DocumentSaveAs	
	filter	

	EmailRendition	
	filter	

	EmphasisAction	
	EmphasisHandler	
	FindAndReplace	
	FormattingAction	
	FormattingActionChangeCase	
	FormatTableCellShading	
	Selections containing cells with different color attribute definitions	

	IndentElement	
	InlineAttributes	
	InsertXACrossref	
	InsertComment	
	InsertColumnBreak	
	InsertCustomLink	
	InsertElement	
	displayName	

	Insert Emphasis	
	InsertEndNote	
	InsertEntityReference	
	InsertFootnote	
	InsertHyperlink	
	InsertInlineElement	
	InsertPageBreak	
	InsertSectionBreak	
	InsertTable	
	InsertTableColumn	
	InsertTableRow	
	ManageTextEntities	
	MergeComments	
	Selecting Files	
	Automatically Merging All Comments	

	MergeTableCells	
	PageLayout	
	Paste	
	DefaultPasteOptionAsText	
	PreviewRendition	
	filter	
	StyleSheet Child Nodes	
	Using PreviewRendition to Load External Objects	

	Redo	
	RejectRevision	
	SaveToRepository	
	Tokens	
	Delegates	

	SetAccessMode	
	User Experience	
	Access Modes and SharePoint	

	SetColumns	
	SpellChecker	
	ShowAttributesHandler	
	SplitTableCells	
	StyleHandler	
	TableAutoFitBehavior	
	TableBorders	
	TableCellAlignment	
	TableDistributeColumns	
	TableDistributeRows	
	TableRefresh	
	QuarkSubSection	
	ToggleCommentsPane	
	ToggleEmpty	
	ToggleEntityView	
	ToggleKeepWithNext	
	ToggleTrackChange	
	ToggleVisibleElement	
	ToggleWidowOrphanControl	
	Undo	
	UpdateSchema	
	WordDialogEdit	

	Application Configuration: Extensibility Interface	
	Programming for Quark XML Author	
	Calling Quark XML Author from an External Method with Delegates	

	Configuring the Extensibility Interface	
	Building the EI Method	
	Calling the EI Method	

	List of Available Enumerated Values	
	XOM Defined	

	List of Available Delegates	
	List of Available Document Events	

	Application Configuration: ResolveReferences	
	The Reference Node	
	Pattern Attribute	
	Assembly and Class Attributes	
	Tokens	

	Application Configuration: Miscellaneous items	
	CultureName	
	Language and Numerical Content	

	EnableProgressDialogs	
	ErrorLogging	
	ExtendedLoggingInfo	
	LogFilePath	
	UndoHistory	
	Namespaces	
	Namespace	
	NotSupported	

	TempFilePath	
	Blocking Shortcut Keys	
	DisableTemplateAddins	
	Disable all add-ins	
	Disable all add-ins except the specified list	
	Disable the specified list of add-ins	

	ImageFilePath	

	Document Level Configuration	
	Portionmarks	
	ReferenceShadingColor	
	AllowRestartContinueNumbering	
	DefaultSaveOptions	
	ComponentCopy	
	Commenting	
	Attribute	

	Break	
	SectionBreak	
	PageBreak	
	ColumnBreak	

	AllowHeaderFooterEdit	
	AllowSoftLinebreaks	
	Smart Paste	

	Reviewing	
	HiddenInsertables	
	Change To Menu	
	ShowInsertBeforeMenu	
	PasteTrackDeletedText	
	ShowInsertAfterMenu	
	EnableFastSave	
	EnableOpenDocxSupport	
	dir	

	Application Configuration: XpressUpdates	
	Overview	
	XpressUpdate.xml	
	Manifest.xml	
	Dialogs	

	Quark XML Author Structure Overview	
	XML Declaration and Processing Instructions	
	Defining Multiple Namespaces	

	Root Element	
	External Entities	
	Definition Order	
	Attributes	
	Emphasis Styles	
	Elements	

	Comment Lines	
	Attribute Groups	
	Common Attributes	
	Field Attributes	

	Quark XML Author Structure Attribute Definition	
	AttributeDef	
	Restriction	
	Using uniqueidentifier	

	Associating Attribute Definitions with Elements and Emphasis	
	SectionBreak, PageBreak, and ColumnBreak Attributes	

	Quark XML Author Structure Emphasis Definition	
	EmphasisDef	
	Specialized	
	Style	
	Substyles	
	Attributes and Attributes Type	
	Associating Emphasis with Elements	
	Extensibility Methods	
	Restricting Emphasis Nesting	
	Inline Media	
	See section 14.6.2, ‘’Images	
	Inline OLE	

	Quark XML Author Structure Element Definition	
	ElementDef	
	Section	
	Para	
	Sequence	
	Choice	
	Uniqueidentifier	
	Unmanaged	
	OLE	
	Media	
	Reference	
	EndNote	
	Table	
	Support for language-specific configurations	
	 UI controls and features	
	Icons	
	Context Menus	
	Resource Files	
	Modifying file filter resource strings	
	Extensibility Methods	

	Starter Documents and Templates	
	Starter Document	
	Document Content	
	Namespace	
	DOCTYPE declarations	

	Microsoft Word Templates	
	Preparing to Use TemplateManager	
	Removing temporary files	
	CollectControls.exe	
	To Launch TemplateManager	
	Application Config Tab	
	Document Config Tab	

	Converting Word 2003 configurations to the latest supported version	
	Enabling the Styles button in standard Word	

	Structured Authoring	
	Deleting Content Elements and Structure	
	Backspace and Delete in Structured Authoring	
	Entering / Pasting Text - Advanced	
	Typing in an Empty	
	Tab in Structured Authoring	
	Cut, Copy, Paste in Tables	
	General	
	Pasting Table Elements	
	Pasting Table Elements Into a Selection	
	Pasting Table Elements Without a Selection	

	Creating Tables from Copied Table Elements	
	“strict XML” execution of Cut and Copy	
	Multiple element - Cut, Copy, Paste	

	Integration with Content Management Systems	
	SaveToRepository	
	Example	

	Upload() Interface	
	Example 1: Upload without delegates	
	Example 2: Upload with delegates	
	Example 3: Upload a document fragment	

	Download and Content Reuse	
	Open a CMS Document in Quark XML Author	
	Importing content into existing documents	

	Download Interface	
	Example 1: Drag and Drop External Content	
	Example 2: Using Paste to Insert External Content	
	Example 3: Opening a Document Referencing External Content	

	Configuring Smart Paste	
	Smart Paste Overview	
	Smart Paste Extensibility Method	
	Configuration-specific transforms	
	Configuration-specific table transforms	

	Enabling Smart Paste	
	The Intermediate Schema	
	TextType Elements	
	Table	
	Image	

	Final Transformation Stylesheet	
	Multipart Wrapper	
	Example: Intermediate Heading > Quark XML Author Section	
	Example: Handling List Items	
	Example: Handling Table Rows	

	Configuring MetaFormsBridge	
	XpressRun Method	
	XpressRun Tokens	
	MetaForms Files	
	Example	

	Implementing Cross References	
	AppConfig	
	DocConfig	
	EI Method	
	ComponentCopy Node	

	ElementDef	
	EmphasisDef	
	Configuring the Cross-reference dialog	
	Configuring dialog listings based on target element names (XMLNames) or XPath.	

	Extensibility Interface Use Case Study	
	Inserting Elements Through EI in Quark XML Author	
	Example 1	
	Example 2	

	MathType Integration	
	Implementing MathType Support	
	Serialization	
	Developer Notes	

	OLE Word Document Integration	
	Embedded Table User Experience	
	Editing	
	Viewing	
	Copy and Paste	

	Implementing Embedded Table Support	
	Starter documents	
	Sample configuration	
	Images	
	Emphasis	
	Metadata	

	Smart Content	
	Overview	
	Serialization	
	Word Tables	
	Why are there empty values in the smart content?	
	Serializing Metadata	

	Images	
	The Word canvas	
	Image sizing logic	
	Rounding Error Issue	

	Implementing a Custom XML Resolver	
	Implementation Overview	

	How Microsoft and Quark Support Languages and Cultures	
	Bidirectional language support	
	Bidirectional language support in Microsoft Office	
	Bidirectional language support in Quark XML Author	

	Configuring the XAS to allow support of direction attributes for elements	
	Configuring the user interface for bidirectional language support	
	Configuring bidirectional language support at the content level	
	Configuring bidirectional language support at the element level	
	Configuring bidirectional language support at the document level	

	IME based:Supporting New Languages	
	What Must Be Translated	
	Translation Process Overview	
	(External)	

	Icons (Internal)	
	Shortcut keys (Internal)	
	Friendlies (Internal)	
	Localization: A step-by-step example	
	Pre-requisites	
	The localization procedure	

	Variable Reference Support	
	Section Type Elements	
	Reference Type Elements	
	Additional delegates	

	Installation of Quark XML Author	
	Automated installation on a new machine:	
	Or for manual installation on a new machine:	

	Appendix A – Color Names	
	Appendix B – Change Log	
	Changes in version 6.3	
	Changes in version 6.2	
	Changes in version 6.1	

	Legal notices	

